首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以非丁基氧化锡为催化剂,通过甲基膦酸二甲酯(DMMP)与乙二醇(EG)酯交换反应,制备了含磷多元醇(DMMP-EG)。将DMMP-EG与聚磷酸铵(APP)作为复合阻燃剂,制备了阻燃硬质聚氨酯泡沫(RPUF),探讨了复配阻燃剂对RPUF力学性能、阻燃性能、热稳定性的影响。结果表明:DMMP-EG与APP复配阻燃RPUF,在提高阻燃性能的同时,力学性能显著提高;当DMMP-EG添加15份、APP添加30份时,泡沫的力学性能最佳,与纯RPUF相比,压缩强度提高了1.25%,冲击强度提高了101.53%;此时,极限氧指数(LOI)提高至21.7%,烟密度等级为40。热重(TG)分析结果表明:在氮气气氛中,750℃时的残炭率较纯RPUF提高了612.56%。阻燃体系呈现以凝聚相为主的气相-凝聚相双相阻燃特点。  相似文献   

2.
以聚磷酸铵(APP)和碳纳米管(CNTs)为阻燃剂和增强剂,采用一步发泡法制备硬质聚氨酯泡沫/聚磷酸铵/碳纳米管(RPUF/APP/CNTs)复合材料。并研究了APP和CNTs的含量对硬质聚氨酯泡沫(RPUF)的泡孔结构、阻燃性能、强度及导热系数的影响。结果表明:APP和CNTs的加入可以显著提高RPUF复合材料的阻燃性能。当添加量为20%,且APP与CNTs的质量比为2∶1时,RPUF复合材料的LOI值为28.2%,提高了61.1%,通过了UL-94测试V-0等级,而且APP和CNTs之间表现出明显的协同阻燃作用。在锥形量热测试(CCT)中,RPUF复合材料的PHRR为174.25 k W/m2,相比于纯RPUF,降低了66.05%。质量比为1∶2时,RPUF复合材料的压缩强度为0.30 MPa,提高了7%,弯曲强度为3.0 MPa,提高了43%。当APP与CNTs的质量比为1∶1时,相比于纯RPUF,RPUF复合材料的LOI值提高47.43%,并通过了V-0等级,且PHRR降低了63.84%。同时,RPUF复合材料的压缩强度提高了3.57%,弯曲强度提高了33.33%,此时,RPUF复合材料的综合性能达到最佳。  相似文献   

3.
RPUF/蛭石复合材料的制备及阻燃性能研究   总被引:2,自引:0,他引:2  
用酸化、钠化对蛭石进行结构修饰,以十六烷基三甲基溴化铵(HDTMA·Br)为插层剂,制备了有机化蛭石(OVMT)。XRD 分析表明:HDTMA~ 已完全插层,蛭石的层间距由改性前的1.49 nm 增大到4.53 nm。将 OVMT与聚磷酸铵(APP)复配用于硬质聚氨酯泡沫塑料(RPUF)的阻燃,氧指数测试得出:当 OVMT 和 APP 添加量分别为5%和10%时,极限氧指数达到26.8%,比单独添加7%OVMT、10%APP 分别高出5.4%和3.2%;DSC 和 TG测试表明:与纯 RPUF 相比,复合材料吸热峰温度从358.1℃提高到369.6℃。  相似文献   

4.
《应用化工》2022,(4):915-918
采用熔融共混法制备改性坡缕石/聚苯乙烯复合阻燃材料(Ps-hat)。结果表明,改性坡缕石的加入可有效改善聚苯乙烯的热稳定性、阻燃性能和力学性能。添加10%的改性坡缕石/聚苯乙烯复合阻燃材料(Ps-hat(10))的热释放速率为651W/g,总热释放量为42 060 J/g,较纯聚苯乙烯(PS)的热释放速率(763W/g)和总热释放量(48 320 J/g)均有明显下降;Ps-hat(10)在800℃下残炭剩余量16%,高于纯PS残碳剩余量;Ps-hat(10)比纯PS应力提高13.8%,具有较好的力学性能。  相似文献   

5.
以苯酚与甲醛为原料合成酚醛树脂,并添加助剂与聚磷酸铵(APP),采用低温模塑发泡法制备改性酚醛泡沫(PF)。采用锥形量热仪、烟密度和热重分析分析不同APP添加量对PF燃烧性能和热稳定性的影响。结果表明:在PF中添加APP可以提高其阻燃性能和耐热性能,在60 kW/m2热辐射强度下热释放速率峰值(PHRR)和总热释放量(THR)随着APP添加比例的提高而降低。当APP添加量为20%时,改性PF的PHRR由90.44 kW/m2下降至11.92 kW/m2。在无焰和有焰两种条件下,改性PF的烟密度随APP添加量增大而提高,透光率降低。升温速率为5℃/min条件下,随着APP添加量的增大,改性PF的热解温度逐渐提高,但APP添加量较低(≤5%)时,不同升温速率下改性PF热解特性均与纯PF无明显差异。升温速率≥30℃/min时,APP与PF热解产物形成的残炭在800℃未发生热解。APP添加量为10%~15%时,改性PF具有良好的阻燃性能和耐火性能。  相似文献   

6.
为了开发更安全可靠的工程材料,将水滑石(LDH)和聚磷酸铵(APP)复配加入聚烯烃复合材料,通过熔融共混方式制备阻燃聚烯烃复合材料,通过电子束辐射交联的方式提升聚烯烃复合材料的力学性能。结果表明:APP的加入可以有效增加聚烯烃复合材料热分解残留物质量,但过量添加APP对复合材料热延伸性能产生明显负面作用。当APP的添加量为20份,聚烯烃复合材料的热释放速率峰值(pHRR)降至192 kW/m2,有效延缓聚烯烃复合材料燃烧早期热量释放速度。电子束辐照后样品的力学性能提升,APP的添加量为20份,聚烯烃复合材料的拉伸强度和断裂伸长率分别达到9.8 MPa和248%。选择合适的配比进行复配并辐射交联,可以制备具有优异阻燃性能和良好力学性能的聚烯烃复合材料。  相似文献   

7.
制备了可膨胀石墨(EG)和N,N-[双(2-羟乙基)氨甲基]磷酸二乙酯(BHAPE)单独添加及复配使用阻燃的硬质聚氨酯泡沫塑料(RPUF),通过万能拉伸试验机、组合冲击试验机、氧指数仪、综合热分析仪、锥形量热仪和扫描电镜(SEM)等测试,对力学性能、阻燃性、热稳定性、燃烧性能及炭层形貌等进行了分析。结果表明,BHAPE的添加能够改善RPUF的比冲击强度,减少EG对体系力学性能的损害;氧指数(LOI)的实际值明显高于计算值,复配组分的LOI由20.3%提高到29.2%,EG/BHAPE具有显著的协同效应;EG/BHAPE复配使阻燃体系的初始分解温度、最大热解速率、热释放速率、总热及总烟释放量降低,残炭率提高,燃烧后形成厚且致密的炭层。  相似文献   

8.
通过在表层添加有机改性蒙脱土(OMMT)与聚磷酸铵(APP)以及纳米氢氧化镁[Mg(OH)_2]与APP制备具有阻燃功能的核壳型木塑复合材料,并利用力学性能测试、锥形量热测试和热重分析,研究了阻燃剂对核壳型木塑复合材料的力学性能、燃烧性能和热稳定性能的影响。结果表明,OMMT与APP有更好的协同效果和阻燃效果,其热释放总量以及热释放速率都呈下降趋势,但是复配之后的产烟量却增多。热失重分析结果表明,APP与OMMT的复配和APP与Mg(OH)_2的复配相比较,前者残炭率更高,达到了55.2%。两种阻燃剂复配后弯曲强度和弹性模量呈现下降趋势,力学强度下降。综合比较,APP与OMMT复配阻燃性能更好。  相似文献   

9.
通过全水发泡技术制备硬质聚氨酯泡沫/三聚氰胺聚磷酸盐(RPUF/MPP)复合材料,并对其泡孔形貌、热稳定性、阻燃性能、烟释放特性进行研究,结果表明,RPUF/MPP复合材料初始分解温度与纯样相比,升高了18~26℃,热稳定性明显提升;50份MPP使复合材料极限氧指数达到24.4%,垂直燃烧达到UL 94 V-0级。RPUF/MPP50热释放速率峰值和总热释放仅为139 W/g和16.7 kJ/g,与纯样相比,分别降低了32.5%和28.3%。经过MPP改性,RPUF/MPP50最大烟密度及烟密度等级分别降低至32.10%和19.56。炭渣分析表明,MPP可以有效促进RPUF/MPP复合材料燃烧过程中致密炭层的形成,且炭层中石墨化成分比例明显提高,有利于其阻燃性能的提升。研究表明,MPP可以显著提升硬质聚氨酯泡沫火灾安全性能。  相似文献   

10.
《塑料科技》2017,(9):50-54
将碳微球(CMSs)及聚磷酸铵(APP)添加至聚丙烯(PP)中,制备了PP复合材料。采用极限氧指数(LOI)、热重分析仪(TGA)、锥形量热仪(CONE)及电子万能试验机(EUT)等表征手段对PP复合材料的阻燃性能、热稳定性能以及力学性能进行了测试分析,考察了APP与CMSs的质量比以及添加量对PP阻燃体系性能的影响。结果表明:在APP与CMSs质量比为4:1,总添加量为30%时,PP/CMSs/APP复合材料的LOI为28.7%,较纯PP提高了59.4%;火灾性能指数(FPI)值较纯PP提高了约5倍;热释放速率峰值(PHRR)、总热释放量(THR)、平均热释放速率(MHRR)和平均有效燃烧热(MEHC)分别较纯PP降低了31.11%、14.2%、24.5%和32.1%;火灾蔓延指数(FGI)值较纯PP降低了55.3%,且复合材料的热稳定性有所提高,成炭能力显著提升,PP的阻燃性能得到明显改善。  相似文献   

11.
为提高三聚氰胺聚磷酸盐(MPP)和二乙基次膦酸盐(OP)协效阻燃玻纤(GF)增强尼龙66(PA66)的综合性能,引入少量的无机阻燃剂硼酸锌(ZB)作为协效剂,系统研究了不同添加量的ZB对阻燃材料的阻燃性能、热稳定性、力学性能和白度的影响。结果表明,当MPP和OP的总添加量为15%,复配0.5%的ZB时,阻燃GF增强PA66的垂直燃烧阻燃等级达到UL94 V–0级,且热释放总量由MPP/OP体系的15.4 k J/g降为13.7 k J/g;ZB的引入促进了连续、致密炭层的形成,增强了凝聚相阻燃;ZB增强了阻燃材料的热稳定性,ZB复配量为1.0%的阻燃材料的初始降解温度提高到了301℃,有效避免了加工过程中的降解;当ZB添加量为1.0%时,阻燃材料的拉伸强度和缺口冲击强度分别为100.9 MPa和4.22 k J/m~2,均优于未添加阻燃剂的纯GF增强PA66;同时,样品的白度得到了明显提升,有利于阻燃GF增强PA66的工业化应用。  相似文献   

12.
选用聚磷酸铵(APP)与二乙基次膦酸铝(ADP)复配用于木塑复合材料(WPC)的阻燃并研究了材料的阻燃性能。结果表明,纯WPC的氧指数(LOI)值为23.5%,当单独添加19%(wt)的APP时,材料通过了垂直燃烧测试UL-94 V-0级,LOI值为28.9%。当APP与ADP以质量比为6∶1复配,阻燃剂总添加量仅为15%(wt)时,材料通过了UL-94 V-0级,LOI值达到了28.7%,表明ADP/APP体系对WPC具有很好的协同阻燃效应。力学性能测试表明,APP/ADP体系的加入对材料的力学性能影响较小。热重分析测试表明,APP/ADP体系促进了材料的初期热降解,但提高了材料的成炭性能。锥形量热测试及扫描电镜对残炭的测试表明,APP/ADP体系的加入使得材料在燃烧过程中形成了膨胀、连续的炭层,很好地抑制了材料的燃烧,使得材料的热释放速率、总热释放量显著降低。  相似文献   

13.
《粘接》2017,(4)
以蓖麻油为基础多元醇,聚磷酸铵(APP)与次磷酸铝(AHP)复配协同聚氨酯阻燃体系,制备了阻燃聚氨酯密封胶(FRPUS)。研究了APP/AHP阻燃体系对FRPUS阻燃性能、热稳定性能的影响。结果表明,APP与AHP的质量比为5:1,添加量为50%时,FRPUS的极限氧指数(LOI)值达到35.1%,较纯PUS提高74.6%;TGA和热降解动力学表明APP/AHP提高了阻燃体系的热稳定性。  相似文献   

14.
利用锥形量热仪研究了可膨胀型石墨(EG)和甲基麟酸二甲酯(DMMP)对硬质聚氨酯泡沫(RPUF)的阻燃协同作用.结果表明,当DMMP/EG质量比为2.5:7.5,RPUF中添加质量分数为10%的该复配阻燃剂时,其热释放速率(HRR)为51.8 kW/m2,热释放峰值(PHRR)为148.67 kW/m2,总烟释放(TS...  相似文献   

15.
以间苯二胺为固化剂,聚苯氧基磷酸210氢9氧杂磷杂菲对苯二酚酯(POPP)、聚磷酸铵(APP)为阻燃剂, 复配质量分数为1 %有机蒙脱土(OMMT)为膨胀阻燃体系,对环氧树脂(EP)进行阻燃改性。通过极限氧指数测定仪、垂直燃烧测定仪同步热分析仪、锥形量热等研究改性EP的阻燃性能、热性能和力学性能。结果表明,当膨胀阻燃体系(2.5 %POPP/APP+1 %OMMT)添加量为3.5 %时,改性EP可达UL 94 V-0级,同时LOI为25.2 %;当膨胀阻燃体系添加量为11 %时,改性EP的LOI值进一步升高到31.7 %;阻燃剂的加入,使EP的初始分解温度略有降低,但残炭量明显增加;POPP/APP/OMMT的加入很大程度上降低了EP的热释放速率、烟释放量和平均热释放速率。  相似文献   

16.
利用低成本聚氯乙烯(PVC)作为分散相、高韧性热塑性聚氨酯(PUR-T)作为连续相,以熔融共混方法制备出PUR-T/PVC合金,经过实验对比与配方优化,制备出的PUR-T/PVC合金具有低成本、较高的拉伸强度与韧性、较广的硬度范围以及良好的阻燃性能。针对PUR-T/PVC合金材料发烟量较大的缺点,引入了表面改性水合氧化铝(ATH)/聚磷酸铵(APP)复配阻燃体系,实验表明,该复配阻燃体系对PUR-T/PVC合金具有一定增韧作用的同时,能够起到较好的抑烟作用,并进一步提升了合金的阻燃性能。经过测试与配方优化,PUR-T添加量为70份、PVC为30份,邻苯二甲酸二辛酯为6份,复配阻燃剂(改性ATH与改性APP质量比为1∶2)添加量为60份时,PUR-T/PVC合金的综合性能最佳,其拉伸强度、断裂伸长率和撕裂强度分别达到23.84MPa,387.18%和86.4N/mm,极限氧指数为32.87%,垂直燃烧等级达到V–0级别,烟密度等级降至52。  相似文献   

17.
通过熔融共混法制备了聚丙烯/三聚氰胺聚磷酸盐(PP/MPOP)和聚丙烯/三聚氰胺聚磷酸盐/聚磷酸铵(PP/MPOP/APP)阻燃复合材料,探讨了阻燃剂MPOP的添加量以及MPOP、APP的配比对复合材料燃烧行为的影响。结果表明:PP/MPOP复合材料的热稳定性和阻燃性能随MPOP添加量的增加而提高,且均在MPOP添加量为30份时达到最大值。同PP/MPOP(100/30)相比,当复合阻燃剂MPOP/APP的添加量为30份、且配比为15/15时,复合材料PP/MPOP/APP的热稳定性下降。但在所有试样中,该阻燃PP复合材料具有最低的最大分解速率以及最高的成炭率;其极限氧指数(LOI)为23.6%,较PP/MPOP(100/30)和纯PP分别提高了22.3%和32.6%;并且PP/MPOP/APP(100/15/15)的平均热释放速率、总释热量、有效燃烧热均达到最低值,因此该复合材料具有最佳的阻燃性能。  相似文献   

18.
新型磷-氮系复配阻燃剂在聚丙烯中的应用   总被引:1,自引:0,他引:1  
采用一种新型磷-氮系阻燃剂与聚磷酸铵(APP)复配成膨胀型阻燃剂,对聚丙烯(PP)进行阻燃改性。研究了阻燃PP的阻燃性能、热分解过程及力学性能。结果表明:当复配阻燃剂添加量为30%时,阻燃改性PP的氧指数和垂直燃烧等级分别达到32.3%和UL94 V-0级,拉伸强度为37.4 MPa,缺口冲击强度为39.5 kJ/m2,并且具有很好的热稳定性。  相似文献   

19.
聚磷酸铵(APP)单独应用于阻燃环氧树脂(EP)时,阻燃效率较低,往往需要较大的添加量才能达到环氧树脂复合材料的阻燃要求。通过制备层状双金属氢氧化物Zn-Fe-LDH,然后将其与聚磷酸铵复配引入环氧树脂中,成功制备出阻燃型复合材料(Zn-Fe-LDH+APP)/EP。极限氧指数(LOI)及垂直燃烧(UL94)测试表明,当Zn-Fe-LDH和APP的总添加量为5%时,(Zn-Fe-LDH+APP)/EP的LOI为28.6%,UL94可达V-1级,锥形量热结果表明,相比较纯APP,Zn-Fe-LDH和APP体系可明显降低环氧树脂的热释放和烟释放。  相似文献   

20.
以聚磷酸铵(APP)为主要阻燃剂,复配可膨胀石墨(EG)和膨润土作为阻燃剂和改性剂,制备了完全无机且无卤阻燃剂改性的硬质聚氨酯泡沫(RPUF)。在固定无机阻燃剂及改性剂总量的条件下,研究了膨润土和EG用量及比例对RPUF的热稳定性、阻燃性能、力学性能、泡孔结构等的影响。结果表明,随膨润土或EG含量的增大,泡沫的压缩强度先增大后减小,二者含量分别为10%和5%时压缩强度最大。EG对泡沫阻燃性能的提高有显著影响,但同时也会使泡孔孔径增大;而膨润土作为泡沫成核剂能明显减小孔径。通过热重分析表明膨润土和EG的加入能明显增强泡沫的热稳定性。当APP为泡沫总质量的15%,膨润土为5%,EG为5%时,可以制得阻燃性能、力学性能和泡沫孔径较佳平衡的阻燃泡沫材料。在该条件下,泡沫的压缩强度为0.42 MPa,泡沫平均孔径为434μm,LOI值达到29%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号