首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
以提高六轴关节工业机器人的定位精度为目标,基于D-H运动学模型与微分误差思想,建立了机器人的位置误差模型,设计了简单高效的测量算法和辨识算法,在辨识出的机器人几何误差参数基础上,对机器人运动学模型进行修正,以沈阳机床上海研究院的i5 Robot A3型工业机器人为实验研究对象,结果证明改进后机器人的定位精度得到大幅度提升。  相似文献   

2.
鉴于工业机器人的精度性能无法满足高端制造领域的要求,研究了机器人定位精度提升方法,阐述了基于位姿微分变换的运动学误差模型和基于坐标误差传递的运动学误差模型的构建方法,提出了一种基于BAS-PSO算法的运动学参数辨识方法,并通过实验对比分析了不同运动学误差模型的精度。实验结果表明,基于BAS-PSO算法辨识后TX60机器人的平均综合位置/姿态误差分别从(0.312 mm,0.221°)降低为(0.093 8 mm,0.044 2°);而基于正运动学模型直接辨识后机器人的平均位置误差和平均姿态误差分别为0.097 5 mm和0.098 6°。本文提出的BAS-PSO算法具有较好的辨识精度和收敛速度,直接利用正运动学模型辨识的机器人运动学参数具有更好的辨识稳定性和精度。  相似文献   

3.
为了提高六自由度机器人在应用中的定位精度,提出一种提高机器人绝对定位精度的分级标定方法。该方法第一阶段进行几何参数误差的标定,以改进的Denavit-Hartenberg(MD-H)模型为基础,加入减速比和耦合比的因素建立了完整的工业机器人几何参数误差模型,之后采用Levenberg-Marquarelt(LM)算法辨识出机器人的几何参数误差并计算出剩余残差;第二阶段建立基于粒子群—支持向量回归(PSO-SVR)算法的剩余误差预测模型,来预测并补偿修正几何参数后剩余的残留误差。最后,以六自由度工业机器人进行试验验证,经过分级标定后机器人末端中心点的平均位置误差由5.866 mm减少到0.211 6 mm,最大位置误差由10.322 9 mm减少到0.699 9 mm,验证了该标定算法的正确性和有效性。  相似文献   

4.
为提高串联6自由度机器人的绝对定位精度,针对几何参数误差补偿后的工业机器人关节刚度参数展开研究。首先,基于虚拟关节模型建立了工业机器人一维关节刚度误差模型。其次,为提高关节刚度参数的辨识精度与效率,利用BP神经网络对刚度误差模型进行拟合,以优化遗传算法的初始种群适应度。最后,利用激光跟踪仪AT930和ER10L-C10机器人进行实验,验证以上误差模型与关节刚度参数辨识算法。实验结果表明,经过关节刚度误差补偿后,机器人的平均距离误差与最大距离误差分别为0. 248 5 mm与0. 333 2 mm。相比于补偿前的距离误差,机器人定位精度提高了33. 7%。因此,通过改进遗传算法辨识得到的机器人关节刚度参数能够有效地提高机器人定位精度。  相似文献   

5.
为了提高六自由度工业机器人绝对定位精度,对工业机器人进行了运动学建模,并建立了基于MD-H参数误差的机器人末端定位误差辨识模型,应用激光跟踪仪测量系统采集样本点数据,应用基于奇异值分解的最小二乘法求解辨识模型,以获得几何参数误差,并根据辨识出的误差对机器人末端定位精度进行补偿,实验结果表明,经过辨识和补偿后,工业机器人...  相似文献   

6.
针对工业机器人在模型未知情况下的碰撞检测问题,提出一种基于参数辨识和广义动量的新型碰撞检测算法。首先,通过整体辨识的方法,得到较为精准的机器人动力学模型。然后,基于动力学模型、电机反馈位置与驱动电流信号计算机器人运行过程中的动量偏差来观测碰撞力矩的大小和方向。通过等效为带通滤波器来分析调节观测器的参数,进一步对碰撞力矩进行滤波,减小了高频噪声和低频模型误差产生的扰动,提高了碰撞检测算法的鲁棒性。最后,通过仿真与实物实验,验证了该算法可以有效地检测出碰撞,提高了工业机器人的安全性。  相似文献   

7.
基于标定和关节空间插值的工业机器人轨迹误差补偿   总被引:3,自引:0,他引:3  
轨迹精度是工业机器人重要的动态性能,目前工业机器人的轨迹精度远低于定位精度,提出一种基于机器人运动学标定和关节空间插值误差补偿的方法来提高机器人轨迹精度。基于MD-H方法建立机器人的运动学模型,在此基础上运用机器人微分运动学理论建立末端位置误差模型和轨迹误差模型。为克服最小二乘法等传统方法在数据噪声较大且不符合高斯分布时收敛慢甚至发散的问题,提出一种基于扩展卡尔曼滤波算法的机器人运动学参数辨识方法,实现运动学参数辨识的快速收敛。经过分析发现机器人误差在关节空间具有连续性的特点,为此提出一种关节空间插值误差补偿方法,建立网格形式的误差补偿数据库,并利用关节空间距离权重函数和已知的网格顶点误差计算各控制点的关节转角误差。通过试验对所提出的参数辨识和关节空间误差补偿方法进行了验证,试验结果表明:经过运动学参数辨识和补偿后机器人的绝对定位精度由1.039 mm提高到0.226 mm,轨迹精度由2.532 mm提高到1.873 mm,应用关节空间插值误差补偿后机器人的轨迹精度进一步提高到1.464 mm。  相似文献   

8.
采用基座布置六维力传感器的方式进行机器人动力学参数辨识。以递推牛顿-欧拉方程为基础建立机器人动力学模型,给出六维力传感器输出与机器人关节间动力学关系,分离待辨识动力学参数并确定其最小惯性参数集,最终建立基于基座六维力传感器的机器人辨识模型。为了进一步提高辨识精度,采用两层低通滤波算法推导出加速度替代公式和速度滤波算法,减少加速度和速度噪声的影响。最后,以六自由度协作机器人的前2个关节为对象,设计辨识实验,获得两关节的最小动力学参数集。通过结果逆向验算表明,基座布置六维力传感器方式能以较高的精度辨识出机器人动力学参数。  相似文献   

9.
基于运动学标定的空间机器人位姿精度的研究   总被引:1,自引:0,他引:1  
刘宇  梁斌  强文义  李成 《机械设计》2007,24(4):8-12
基于一阶线性误差假设推导了空间机器人末端操作器运动学位姿误差模型.由于空间机器人末端安装的CCD相机具有较大的随机测量误差,因此,重新建立了包含随机测量噪声在内的新的误差模型,它考虑了机器人非几何参数误差--传动环节的回差.然后,根据极大似然的算法,对机器人连杆几何参数的真值进行辨识.最后,通过仿真对极大似然算法与通常的最小二乘算法获得的机器人定位精度加以比较分析.结果表明极大似然算法对随机测量噪声具有更高的稳定性和适应性.  相似文献   

10.
提出了一种简单实用、成本较低的基于平面约束的机器人误差补偿方法,首先利用改进的D-H法建立机器人运动学模型并通过微分变换原理得到误差传递雅可比矩阵,通过控制机器人末端执行器对标准平面进行示教,根据所测点理论上都处于同一平面这一特性建立机器人参数误差辨识模型。为避免辨识雅可比矩阵出现奇异而导致模型求解不完整,采用了Levenberg-Marquardt算法对普通的最小二乘法进行修正,对误差模型进行求解。最后将求解的参数误差补偿到控制器中从而提高机器人定位精度,并通过试验验证了该方法的有效性。  相似文献   

11.
针对工业机器人普遍存在绝对定位精度低下而无法满足工业需要的难题,研究了基于D-H模型的包含复合机构的6R工业机器人运动学模型,建立MDH改进型位置误差补偿方法。按照ISO9283标准,利用激光跟踪仪测量机器人工作空间内的均布点,并列出运动学误差方程,采用最小二乘法辨识出连杆参数误差并对其名义值进行补偿。以川崎ZX165U型6R工业机器人为实例进行测量及误差补偿,效果显著,极大地提高了机器人的绝对定位精度,充分验证了算法的准确性。  相似文献   

12.
《机械传动》2015,(9):32-36
针对工业机器人绝对定位精度较低,提出通过D-H法建立机器人运动学误差模型的补偿方法,因为机器人结构需满足Pieper准则,所以只考虑了机器人误差模型参数中的关节旋转角参数对机器人末端误差的影响,利用最小二乘法辨识出误差模型中真实的关节旋转角从而补偿误差,同时又利用圆周法对机器人误差进行二次补偿,最终将两次修正后的参数补偿到控制器中从而提高机器人的绝对定位精度。该方法在自主研发的六自由度工业机器人上得到验证,定位精度从补偿前的3.55~4.45 mm提高到补偿后的0.924~1.242 mm,补偿效果明显,为机器人精度研究提供了可靠依据。  相似文献   

13.
基于D-H(Denavit-Hartenberg)参数运动学模型,根据斜交非球型3R手腕的结构特征和工作原理,建立了该手腕的全参数误差辨识模型,并进行了计算机仿真.仿真结果表明:全参数误差辨识模型的辨识精度可达到3.780 42×10-4mm,完全能够满足喷涂机器人的工作精度要求,证明全参数误差辨识模型的正确性.  相似文献   

14.
针对现有工业机器人定位精度较低,提出了通过机器人运动学标定对误差进行补偿的方法。基于D-H运动学模型和微分变换法建立机器人位姿误差模型,然后对误差模型进行冗余参数分析,消除冗余参数得到可辨识的线性方程,最后用迭代最小二乘法进行求解,修正几何参数进而提高机器人定位精度。通过在自主研发的机器人上试验验证,该方法补偿效果明显,增加了参数辨识的准确性和鲁棒性,为机器人标定技术的发展奠定了一定的基础。  相似文献   

15.
根据所构建的空间运动链,机器人加工几何误差一方面与手眼/工件/工具位姿参数辨识误差有关,另一方面与机器人关节运动学误差与弱刚度变形有关.针对这一问题,研究基于运动学误差补偿的手眼位姿参数辨识、考虑测量缺陷影响的工件位姿参数辨识、基于实际加工曲面误差估计的工具位姿参数辨识等新方法,解决位姿参数辨识精度受限于机器人运动精度、现场测点不封闭/密度不均/高斯噪音、加工抖动/受力变形/回转轴误差等多种因素影响的问题;综合考虑关节运动学误差、弱刚度变形、误差补偿,以整体误差控制为目标,建立加工误差补偿与机器人位姿优化通用模型,可推广应用于法向深度(磨削/铣削)、切向滑移(制孔)、角度倾斜(切边)等多种机器人加工误差控制;完成手眼/工件/工具位姿参数辨识试验、整体误差补偿与机器人加工试验,验证所提方法的有效性.  相似文献   

16.
为了提高工业机器人的定位精度,提出一种自标定算法,首先采用D-H参数模型对机器人进行建模,分析并建立D-H参数误差与机器人末端误差的函数,再设计一个可旋转的标定平台,使机器人去探测不同位姿下的标定平台上的两个标定点,最后采用PSO算法对不同位姿下标定平台两点间的绝对距离来实现对机器人D-H参数误差的辨识。该方法标定过程简单,数据获取方便,并且不依赖于高精度测量仪器。经实验证明,标定后位置精度提高了10倍以上,均方根误差相较于标定前有数量级上的提升,说明机器人标定后,各项误差与机器人实际误差高度一致,从而保障了机器人工作过程的精确性。  相似文献   

17.
夏韬  周军 《机械与电子》2013,(10):71-74
针对水下机器人传统运动辨识模型中使用的误差反传(BP)算法,容易在迭代寻优过程中陷入局部极小点的缺点,将合作粒子群(CPSO)算法与BP算法相结合,形成一种CPSO-BP混合算法,再通过CPSO-BP算法对BP神经网络进行权值修改,建立了CPSO-BP神经网络模型,并将模型应用到水下机器人运动辨识。通过对比3种算法的BP神经网络模型的实验结果,证明基于CPSO-BP神经网络的模型辨识效果更好。  相似文献   

18.
为了解决机器人存在本体误差而影响定位精度的问题,提出一种基于可测距平面的机器人误差检测方法。采用MDH模型来描述机器人存在误差下的运动学模型,结合距离误差模型,推导出平面上点间距误差最小约束模型方程,使用非线性最小二乘法求解方程。归纳了误差检测方法的具体实施步骤,通过仿真确定可辨识误差的参数。采用电阻式触摸屏作为测量工具,在KR5arc机器人上进行实验,误差补偿后的平面上点间距离误差显著减小,证明了基于可测距平面的机器人误差检测方法的有效性。该方法可适用于大多数工业机器人的误差检测。  相似文献   

19.
并联机器人运动学误差的标定是并联机器人工程应用的主要问题之一,测量位形的选择和辨识算法对参数辨识结果和误差补偿效果有重要影响。工程实践中,为了提高测量效率或者受到测量环境的限制,往往利用布置简单和数量较少的位形获取测量数据,这可能导致所构造的线性回归模型出现强复共线性,为此提出了一种残差比例指标的测量位形优选方法和一种主元分析的几何误差源辨识算法来实现变量空间的降维操作,二者可有效地提高测量效率,改善辨识算法的鲁棒性和抗差能力。通过计算机仿真验证了所提方法正确可行。  相似文献   

20.
为提高绳驱动连续体机器人的定位精度,提出了一种针对此类机器人的误差标定与补偿方法.该方法利用指数积(POE)公式建立连续体机器人关节模块的运动学模型,并利用运动学模型推导出误差传递模型.针对误差模型采用最小二乘方法进行误差的辨识,将辨识后的误差补偿至机器人的运动学模型,从而提高机器人关节模块的模型精度.制作了基于柔性支...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号