首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从含氧煤层气中安全分离提纯甲烷的工艺方法   总被引:13,自引:2,他引:11  
针对低温液化分离提纯含氧煤层气流程中的安全问题,提出了控制最低尾气出口温度、添加阻燃成分和预粗脱氧3种防止爆炸的技术手段。结合低温液化分离流程特点,利用爆炸三角形理论,分别给出了上述3种防爆措施的详细实现方法。控制最低尾气出口温度方法的核心就是通过控制液化分离流程的最低温度,将尾气浓度状态点控制在爆炸三角区上限线以上;添加燃阻成分和预粗脱氧方法的核心是:使混合物在分离过程中最可能出现进入爆炸三角区的区域(对低温分离通常在可燃气体液化分离区域)内,氧浓度降低到当地温度、压力下爆炸三角形图上以临界点和纯可燃气体点的连线及以下。基于大量文献数据,拟合出不同温度和压力下甲烷爆炸上限和下限的计算关联式。  相似文献   

2.
空气驱作为一项富有创造性的提高采收率技术,受到越来越多的重视。而爆炸风险的存在严重制约了该技术的发展和应用,因此准确掌握和控制可燃气体的爆炸极限对空气驱技术的消防预警和安全生产有着重要意义。为此,分析了可燃气体爆炸极限的影响因素,结果表明:混合可燃气体的组分会影响其爆炸极限,多组分可燃气体的爆炸极限为各组分的调和平均值;爆炸极限范围随温度升高而增大,呈线性变化;爆炸极限范围也随压力的增加而增大,但呈对数变化;爆炸极限范围随惰性气体体积分数的增加而减小,不同惰性气体抑爆效果不同。运用数值分析原理,结合经验公式,拟合出了不同影响因素下可燃气体的爆炸极限预测模型和统一预测模型,模型的建立为确定空气驱工艺中不同条件下油气混合物的爆炸极限提供了参考。  相似文献   

3.
含硫气田水罐内闪蒸气主要组成为可燃气体,因其特殊作业过程,罐内气相空间存在形成混合爆炸气体的可能。结合生产过程的分析和混合气体爆炸极限的相关理论,建立了适合罐内混合气体爆炸浓度的变化模型和计算方法,通过具体实例的计算预测,展示了含硫气田水罐爆炸可能性及控制方式。研究结果表明:当前含硫气田水罐转水过程中存在爆炸形成的可能条件,爆炸极限可根据含惰性气体的混合可燃气进行计算;应明确在液位下降过程中可燃气体浓度是否会在爆炸极限范围内,建议维持含硫气田水罐转水时的微正压,并在呼吸管上设置阻火器,做好防静电接地,优先采用非金属管道和设备等方式降低爆炸风险。  相似文献   

4.
《青海石油》2008,26(1):19
含氧煤层气分离液化在山西省阳泉市阳煤集团实验成功。不仅可以清除煤矿爆炸的祸根,而且将其变成接替能源中的新宠。中国科学院理化技术研究所的专家介绍说,成功地将含氧煤层气分离液化,即将煤层气中的甲烷等可燃性气体和空气分离,并将提纯后的煤层气液化,这在我国乃至国际上都是第一次。  相似文献   

5.
可燃气体爆炸是工业生产中时有发生的重大灾害事故类型之一,爆炸极限是判断其爆炸危险性的一个重要参数。工业过程中常采用向被保护的设备中引入惰性气体的方法来防止爆炸事故的发生。本研究采用计算绝热火焰温度法,对几种常见的有机可燃气体与氮气混合物的爆炸极限范围进行预测计算,并将计算值与文献值进行比较。结果表明该方法对爆炸下限的预测与实验值吻合程度较好,对爆炸上限的预测则存在一定的误差,并对产生误差的主要原因进行分析。  相似文献   

6.
煤层气爆炸极限分析   总被引:2,自引:0,他引:2  
煤层气爆炸极限的准确确定是煤层气安全开发利用的前提条件。煤层气爆炸极限不仅取决于单组分可燃性气体组成及其含量等自身因素,还受到大气压力、温度等因素的影响,因而首先对煤层气中单组分可燃性气体爆炸极限的准确确定十分必要。为此,采用按完全燃烧所需要的氧原子数和按化学计量浓度两种理论方法对煤层气中常见的单组分可燃性气体进行计算及分析。结果表明,两种理论方法对爆炸下限的计算比爆炸上限更好地接近实验值,其中按完全燃烧所需要氧原子数的改进方法更为准确。然后对含有多组分的煤层气,采用理查特利(Le Chatlier)公式法进行了理论计算,分析了惰性气体、压力、温度对爆炸极限的影响,与温度相比,压力对爆炸上限的影响更大。因此,在煤层气的开发利用中,应尽可能在低温和低压条件下操作。  相似文献   

7.
国内煤层气井下抽采利用率低,造成大量的煤层气资源排空浪费。针对含甲烷浓度低(以甲烷摩尔分数40%为例)的含氧煤层气,提出含氧煤层气开发利用的低温脱氧液化工艺流程,并给出流程计算结果和液化系统单位能耗;通过HYSYS对含氧煤层气低温脱氧液化工艺流程进行模拟,结合爆炸三角形理论,对工艺流程的安全性进行分析,指出含氧煤层气采用低温脱氧液化技术可能存在的安全隐患,并通过分析提出消除安全隐患的方法和措施,指导含氧煤层气低温脱氧液化工艺设计。  相似文献   

8.
��ȼҺ�����崢�˰�ȫ���о���״   总被引:2,自引:1,他引:1  
液化气体必须依赖高压或低温才得以维持其液态,因而其面临的安全性问题比通常的液体或气体更为严峻。文章回顾了世界上液化气体储运安全领域已有的研究成果,分析了液化石油气和液化天然气等可燃液化气体在其储运过程中存在多种安全性问题,重点介绍了容器破裂前的热响应,沸腾液体膨胀蒸汽爆炸(BLEVE),燃气在空气中的扩散和液化气体燃烧等方面的研究进展和取得的成果,以及根据这些成果为理论依据提出的可燃液化气体储运的安全措施。  相似文献   

9.
天然气开采和集输过程中的防爆问题一直是安全控制的重点,常见的特种可燃气体(H2、H2S和CO)及惰性气体(CO2和N2)对天然气的爆炸特性有很大影响。为此,通过实验和理论模型,分析了惰性气体和特种可燃气体对CH4爆炸特性的影响规律。结果表明:①随着惰性气体含量的增加,CH4爆炸极限范围变窄,爆炸的临界氧含量值增大,爆炸的危险性降低,其中CO2比N2具有更好的爆炸抑制效果;②随着特种可燃气体含量的增多,混合可燃气的爆炸极限会向所添加特种气体的爆炸上下限逼近,明显扩大了CH4的爆炸极限范围,降低了发生爆炸的临界氧含量,增加了爆炸风险;③在有惰性气体存在的条件下,温度、压力的上升也会增加CH4的爆炸风险。该研究成果可应用于气田、煤田开发和天然气集输过程中的防爆工艺,预防和降低天然气爆炸风险,保证安全生产。  相似文献   

10.
注空气驱油过程中空气会与原油中的挥发气体混合,遇明火容易发生爆炸,造成关井或安全事故。针对这一问题,分析计算了常温常压下的爆炸极限及安全氧含量,用反应釜装置模拟高温高压条件下可燃气体的燃爆特性。结果表明:温度、压力的升高对可燃气体爆炸下限不敏感,但是对爆炸上限很敏感,随着温度、压力的升高,爆炸极限(体积分数)的范围变宽,由常温常压下的4.76%~14.72%增大到1.6%~36.1%。同时对安全氧含量进行了实验测定,并针对不同压力下的可燃物爆炸极限与安全氧含量数值进行了关于温度的二次线性函数拟合,可用于相近温度、压力下的燃爆特性预测。  相似文献   

11.
液态烃,除日常生活中使用的液化石油气外,还有液化乙烯、液化丙烯、液化甲烷、液化丁二烯、液化天然气、液化乙烷等。为了储存、输送之便,这些物质必须常压下降低温度或常温下增加压力,变成液体。常温常压下,其爆炸极限均小于10%,属于易燃气体,与空气能够形成爆炸性混合物,遇  相似文献   

12.
含氧煤层气的液化及杂质分离   总被引:2,自引:0,他引:2  
煤层气是一种新型清洁能源,但是大部分含氧煤层气由于加工处理技术的限制没有被合理利用,而是直接被放空,不仅造成了资源的浪费,而且还会严重污染大气环境。为了更好地合理利用含氧煤层气,针对大庆庆深气田含氧煤层气气源条件和组分特点,设计了一种新型的煤层气液化及杂质分离工艺流程,采用精馏塔在低温条件下脱除煤层气中的氧气和氮气,精馏塔塔顶冷凝器和塔底再沸器的能量都分别取自于流程中的制冷剂冷却系统和煤层气液化系统,且从塔顶流出的低温杂质气体返回换热器进行冷量回收。采用流程处理软件HYSYS模拟计算的结果表明,所设计的工艺流程能耗较低,精馏塔脱氧脱氮彻底,产品中甲烷纯度高,甲烷回收率较高,该工艺流程的气源适应性和操作安全性都较好。该液化工艺流程的设计为含氧煤层气的液化及杂质分离提供了一种参考方法。  相似文献   

13.
煤层气成因研究   总被引:10,自引:0,他引:10  
对于煤层气来自于煤及煤系地层的问题提出了不同的观点。通过观察煤层气的碳同位素组成(CH4和CO2)、煤岩及烃源岩的热模拟产物及碳同位素组成、煤层气中异常高的汞含量,分析了煤层气储集地层的大地构造环境及煤矿气体突出和森林火灾,发现气体突出和森林火灾前有卫星热红外异常。根据美国煤层气的勘探实践经验,推断煤层气可能来自深部地壳或上地幔,甲烷气体是通过上地幔脱气作用或中地壳的费托合成而生成的,而不是来自煤及其煤系地层。根据这一成因模式,可以探索预防煤矿瓦斯爆炸的新方案,重新考虑煤层气勘探目标。  相似文献   

14.
郭亮  符卉  雷宏  张博 《石油化工应用》2013,32(9):114-116
空气驱空气注入过程中各个环节均存在着可燃性混合物爆炸的危险,这主要是因为注入空气中的氧气在与原油油藏发生氧化反应的过程中有部分消耗,但在氧化反应不完全情况下,地层中的轻烃组分就会和氧气形成混合性爆炸气体,当混合气的浓度达到一定范围时,在一定条件下就会发生爆炸事故。通过分析井下可燃气体的燃爆特性,结合理论研究,对注空气泡沫采油过程中的各环节进行风险分析和安全评估,找出存在的主要风险和有害因素,促进安全控制工作和相关配套技术的发展和完善,将事故的发生率及严重程度控制在行业可接受的范围内。  相似文献   

15.
管道内可燃气体爆炸的研究进展   总被引:1,自引:0,他引:1  
梁春利  李芳 《石油化工》2005,34(Z1):721-723
对近20年来管道内可燃气体爆炸过程的实验和数值模拟研究的进展情况进行评述,以便从整体上了解这一方向目前的研究程度、研究热点和研究方法.并对管道内可燃气体爆炸过程研究的前景提出展望.  相似文献   

16.
陈思维  杜扬 《天然气工业》2006,26(10):137-139
管道内可燃气体的防爆抑爆研究对于石油及天然气工业的安全生产具有重要意义。以RNG 湍流模型及EBU Arrehnius燃烧模型为基础,建立了管道内可燃气体单步化学反应湍流爆炸模型;并以有限体积法求解了爆炸流动及反应控制方程,从而对二维管道中惰性气体抑制可燃气体爆炸的过程及规律进行了数值模拟。模拟结果与实验数据有着较好的吻合性,可为燃气管道中惰性气体防爆抑爆技术的工艺实施、系统设计和关键参数计算提供理论依据。  相似文献   

17.
有限空间内可燃气体泄漏扩散容易引发危险事故,而对于有限空间障碍物存在时气体泄漏扩散规律的研究较少。为此,针对有限空间障碍物对可燃气体泄漏扩散的影响,采用雷诺平均的N-S方程,湍流模型以及无反应多组分输运方程,对障碍物影响下可燃气体泄漏扩散进行了数值模拟,并进一步分析了泄漏位置和障碍物高度对可燃气体泄漏扩散的影响。结果表明:障碍物对可燃气体扩散过程有阻碍作用;障碍物影响下不同位置泄漏扩散形成的浓度场不同,泄漏口与出口异侧,距离障碍物越近,房间内形成的爆炸区域越大;障碍物高度越高,有限空间内形成的爆炸区域越大,增大了危险事故发生的可能性。该模拟结果有助于室内燃气管道安全设计,可为制订室内可燃气体爆炸事故的预防措施提供参考。  相似文献   

18.
设计了一种混合制冷剂和氮节流共同制冷的含氧煤层气液化精馏工艺,模拟结果显示,该工艺可以较为彻底地去除氮气、氧气等,对x(CH_4)为40%的煤层气进料,获得LNG产品纯度高达99.91%,甲烷回收率为97.12%,LNG生产能耗为0.94k W·h/m~3(STP)。对该工艺进行了爆炸安全性分析,表明煤层气仅在精馏塔顶部有爆炸可能性。采用往精馏塔通入氮气降低塔内氧含量的方法来保证操作安全,并对通入氮气的流量和位置进行了优化。结果表明从精馏塔内气体中氧的物质的量分数大于8%的最下层塔板处通入与煤层气同流量的氮气,对氧气稀释效果最好,在保证高纯度LNG产品和甲烷回收率的同时,生产能耗升高30%。  相似文献   

19.
����������������   总被引:7,自引:1,他引:6  
我国煤层气资源十分丰富,但其利用率极低,这主要是因为抽放煤层气中的有效成分甲烷浓度低。因此对煤层气中甲烷的分离提纯极为重要。混合气中各组分在共同吸附时具有竞争性,在这变压吸附过程中直接影响到混合气中各组分的吸附和解吸。文章通过模拟煤层气(CH4/N2)的吸附过程,从理论上分析了混合气体吸附过程中各组分在游离相和吸附相的浓度变化特征及其对吸附分离的影响。最后讨论了抽放煤层气中其他组分对所要提纯组分CH4的影响。  相似文献   

20.
低甲烷浓度煤层气提纯是煤层气资源开发利用的一个重要发展方向,但是甲烷回收率低是低甲烷浓度煤层气提纯技术急需解决的关键问题。为此,采用气体水合物方法对低甲烷浓度煤层气进行提纯实验研究,向反应体系引入环戊烷降低气体水合物相平衡条件并提高甲烷回收率。采用等温压力搜索法测定了低甲烷浓度煤层气在环戊烷—水体系中的水合相平衡数据,并在等温等压条件下研究了生长驱动力和环戊烷浓度对甲烷回收率的作用规律。结果表明:1环戊烷对低甲烷浓度煤层气生成气体水合物的相平衡条件具有显著的促进作用。2甲烷回收率随着生长驱动力的升高而减小,随着环戊烷浓度的升高而增大。压力升高后,氮气将与甲烷竞争进入气体水合物晶体,导致甲烷回收率下降;在283.4K、2.6MPa和13%环戊烷浓度的实验条件下,甲烷回收率高达46.1%。3经过二级水合分离后,煤层气的甲烷浓度从30%提高到了72%。该项成果为低甲烷浓度煤层气提纯技术的发展提供了基础数据和实验依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号