首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
针对加速度传感器在振动分析与故障诊断中的需 求,提出了一种基于椭圆铰链的光纤布拉格光栅加速度传感器,椭 圆铰链和质量块组成加速度传感器理论模型的弹簧质量系统。首先,根据传感器结构的力学 模型,推导出了传感器的灵 敏度和谐振频率的计算公式,进而分析了传感器的结构参数对灵敏度和谐振频率的影响;随 后,采用Lingo软件对传感 器参数进行了最优化分析;最后,基于优化结果设计制作了光纤布拉格光栅加速度传感器, 测试了该传感器的灵敏度、 幅频响应和横向抗干扰等性能。结果表明,传感器的谐振频率约为750 Hz,灵敏度约为128 pm/g,横向抗干扰度小于5%,可用于350 Hz以下的低频微弱振动信号的实时监测。  相似文献   

2.
以提高光纤波长复用型加速度传感器的灵敏度为目标,分析光纤布拉格光栅(fiber Bragg grating, FBG)加速度传感器的增敏思路,阐明FBG加速度传感器灵敏度的增敏瓶颈和固有制约因素,提出波长复用型光纤法布里-珀罗(Fabry-Pérot, F-P)加速度传感器物理模型,理论研究其加速度传感原理,推导加速度传感器谐振频率和灵敏度的解析表达式,深入分析系统的结构体刚度、干涉级次、腔长对加速度传感器灵敏度和谐振频率的影响因素,并对比分析在不同系统刚度下FBG和F-P加速度传感器的灵敏度响应特性。由于灵敏度与谐振频率相互制约,进一步引入品质因子对比分析FBG和F-P加速度传感器的综合性能。在谐振频率为205 Hz时,传感器灵敏度高达198 nm/G,比基于FBG的传感器灵敏度理论上高出约2个数量级,并提出F-P型加速度传感器波长复用方案。理论分析表明F-P型加速度传感器与FBG型相比具有独特的优势,为光纤型加速度传感器的增敏和波长复用提供了新思路,并奠定理论基础。  相似文献   

3.
针对低频振动信号的高精度测量需求,设计了一种基于双光纤光栅的变宽度椭圆铰链式低频加速度传感器.首先建立传感器的结构模型,理论分析了传感器的振动响应特性,给出该传感器的谐振频率及灵敏度的公式.随后搭建了传感单元的数学模型,对传感单元结构的关键尺寸参数进行了优化.另外,利用有限元仿真验证了理论分析结果,最后加工制作了传感器样件,对其进行加速度性能测试.实验结果表明:传感器的谐振频率约为36 Hz,工作频带为0-10 Hz,灵敏度为1496 pm/g.所设计的传感器具有较高的灵敏度、良好的温度补偿能力,能够满足工程中低频振动检测的要求.  相似文献   

4.
全保偏光纤加速度矢量传感器的设计与实验   总被引:2,自引:0,他引:2  
阐述了全保偏光纤加速度矢量传感器的基本工作原理,进行了三维探头结构设计,对系统的谐振频率和加速度灵敏度进行了理论分析,并进行了一维光纤加速度传感器实验,验证了这种全保偏光纤加速度矢量传感器的谐振频率和加速度灵敏度理论分析和结构设计的合理性.  相似文献   

5.
针对振动测量中三维振动信号测量需要,基于柔性铰链设计了一种光纤光栅(FBG)三维加速度传感器。构建了传感器拾振机构的振动模型,介绍了传感器的结构模型和测量原理,推导了传感器谐振频率和灵敏度理论公式,建立了拾振机构的数学模型,并用MATLAB对传感器拾振机构关键尺寸参数进行优化设计。根据优化后尺寸制作了传感器,通过振动实验对其进行性能测试。实验结果表明:该传感器在X轴、Y轴和Z轴方向的谐振频率分别为673,667和1 376 Hz,工作频率区间分别为0~220 Hz, 0~220 Hz和0~450 Hz,灵敏度分别为72.3,70.2和83.1 pm/g。所设计的传感器具有较好的横向抗干扰能力,能够满足三维振动信号测量的要求。  相似文献   

6.
近年来,航空航天领域的飞速发展要求振动测量技术能耐受更高温度,因此高温压电加速度传感器备受关注。通过优化压电晶体切型和设计质量块结构,该文设计并制备了基于硅酸镓钽钙(CTGS)压电单晶材料的压电加速度传感器。实验结果表明,该传感器的谐振频率约为2.2 kHz。在振动频率为100 Hz~1.1 kHz下,常温时传感器的电荷灵敏度基本稳定,平均值为2.44 pC/g(g=9.8 m/s2)。在常温~600 ℃内,传感器的电荷灵敏度基本保持不变,1.1 kHz振动频率下传感器的电荷灵敏度平均值为2.56 pC/g。该传感器能在600 ℃高温下稳定工作。  相似文献   

7.
设计了一种基于柔性铰链结构的光纤光栅加速度传感器,进行了结构理论分析,并构建有限元模型仿真分析了传感器的加速度传感特性。基于F-P滤波器构建了具有温度自补偿功能的光纤光栅加速度检测系统,并通过增加反馈控制电路,对F-P滤波器进行反馈控制,实现了系统的零点自温度补偿。对系统的特性进行了实验测试,结果表明:系统对加速度的连续激励信号和冲击激励信号均有良好的动态响应,系统的固有频率为380.0 Hz,动态响应范围可达65.6 dB,频率响应范围为10.0 ~240.0 Hz,灵敏度为236 pm/g,所设计的加速度传感器具有较强的横向抗扰能力,干扰方向灵敏度仅为工作方向灵敏度的3.5%。  相似文献   

8.
高灵敏度大带宽光纤光栅微地震检波器研究   总被引:9,自引:9,他引:0  
提出了一种基于铰链连接的光纤布拉格光栅(FBG)微地震检波器,理论分析了检波器的灵敏度和谐振频率,讨论了光纤连接位置和质量块转动惯量对灵敏度和谐振频率的影响,提出了获得高灵敏度和大带宽的优化方法,并采用有限元方法进行了模拟验证。制作了检波器样品,并采用商用解调仪进行了测试,获得了高于40pm/g的灵敏度和1kHz的谐振频率,系统的等效噪声低于0.1mg/Hz,表明本文检波器可应用于微地震监测中的高频微弱地震信号探测。  相似文献   

9.
设计了一种竖直式封装结构的分布反馈式(DFB)光纤激光加速度传感器,建立了加速度灵敏度与质量块尺寸参数的理论模型。基于有限元软件,对该加速度传感器的频率响应性能进行了仿真分析,加工制作了传感器原型样品并进行了实验研究。实验结果表明,研制的DFB光纤激光加速度传感器在10~4000Hz频率范围内的平均加速度灵敏度为-119.1dB,且谐振峰值出现在5000Hz附近,与理论和仿真分析结果吻合较好。光纤激光加速度传感器的工作频带在高频方向得到了有效扩宽,能更好地满足DFB光纤激光加速度传感器在高频领域的工程化应用需求。  相似文献   

10.
考虑到光纤布拉格光栅(FBG)在振动监测中的 优势,设计了一种基于对称铰链的中低 频布拉格光栅加速度传感器。阐述了传感器的结构和工作原理,并提出了一种拟合的方法计 算铰 链刚度,同时推导出了传感器固有频率和灵敏度的理论公式。采用SQP优化方法以两种不同 的思 路对传感器的结构参数进行优化,得到了两种满足不同需求的传感器尺寸。最后通过在振动 台上 的标定实验,测试了传感器的灵敏度、幅频响应特性和抗横向干扰能力等性能。实验结果表 明, 传感器的谐振频率约为400Hz,灵敏度约为230pm/g,横向干扰小于8%,具备较好的抗横向干扰能力。  相似文献   

11.
针对高灵敏度的光纤布拉格光栅(FBG)振动传感器的抗冲击可靠性,设计了一种具有限振结构的双悬臂梁型FBG振动传感器,理论分析了结构参数与灵敏度和振动位移的关系,进行了结构优化,确定了限振幅度。制作了限振幅度约为90m的传感器样品,对传感器的加速度灵敏、频率响应、抗冲击性能进行了测试,结果表明,传感器的加速度灵敏度达到525 pm/g,谐振频率约为66 Hz,传感器经过50 g反复冲击,频响特性具有良好重复性,表明传感器具有较高的可靠性。  相似文献   

12.
贾振安  张星  李康  樊庆赓 《光电子.激光》2018,29(10):1053-1057
为了提高振动传感器对加速度信号测量的灵敏度 ,本文提出了一种新型的基于悬臂梁和滑动杆结 合的光纤光栅振动加速度传感器。详细阐述了传感器的结构和工作原理,并推导了传感器固 有频率和灵敏 度的理论公式。最后通过振动台测试了传感器的固有频率和灵敏度,并和光纤光栅仅沿光纤 轴向上受力的 实验数据进行了比较。实验结果表明,传感器频率响应曲线的平坦区域在10~38Hz之间,传感器的固有频 率为62Hz,灵敏度为52.8pm/g。与光纤光栅 仅沿光纤轴向受力的实验相比较,加速度灵敏度提高了70.8%。  相似文献   

13.
针对现有悬臂梁FBG加速度传感器光纤表面粘贴会造成FBG受力不均匀,并且无法在温度变化和振动等复杂的环境中工作的问题,提出一种双光纤-悬臂梁结构的FBG加速度传感器。理论分析了结构参数对传感器灵敏度和固有频率的影响,并采用ANSYS有限元分析软件进行了静应力和模态仿真分析,最后搭建了测试系统对传感器进行性能测试。结果表明,加速度传感器的固有频率为84.86Hz,在15~60Hz的低频段具有平坦的灵敏度响应,双光纤在增加传感器的灵敏度的同时有效消除了温度变化的影响,加速度灵敏度为156.70pm/g,线性度为99.38%,刚性梁有效增加了结构的稳定性,在工作频段内的横向串扰为-26.97dB。  相似文献   

14.
金属环封装低频光纤布拉格光栅振动传感系统研制   总被引:2,自引:2,他引:0  
研制了一种金属环封装的单柱体芯轴式光纤布拉格光栅(FBG)振动传感器,搭建了基于非平衡迈克耳逊干涉仪相位载波调制(PGC)解调技术的FBG振动传感器解调系统,实现了低频振动信号的高精度实时解调,并分析了各参数对传感器谐振频率和灵敏度等特性的影响。实验结果表明,研制的FBG振动传感器谐振频率为388Hz,在10~200Hz频率范围内,传感器的加速度灵敏度约为81pm/g,且加速度响应平坦,起伏小于1dB,与理论分析结果基本一致。研制的振动传感器可实现200Hz以下低频振动信号的实时检测,解调系统的波长检测精度为1.07×10-3 pm,最小可检测加速度为1.3×10-5 g。  相似文献   

15.
针对现有应用于矿井突水动力灾害防治微震监测传感器存在灵敏度低及频率范围窄的问题,该文提出了一种基于三角剪切式结构的微震监测压电加速度传感器。首先建立了压电加速度传感器的力学模型,对与固有频率和灵敏度有关的结构及材料参数进行了分析;然后设计了三角剪切型压电加速度传感器结构,探讨了压电陶瓷材料的选择,再利用ANSYS建立了压电加速度传感器有限元结构模型,分别对传感器进行模态分析、谐振响应分析与压电分析。仿真结果表明,设计的压电加速度传感器的工作频率和灵敏度满足微震监测要求。最后对设计的压电加速度传感器进行了标定和微震信号检测试验。结果表明,该传感器的谐振频率为6 300 Hz,工作频率为0.1~2 100 Hz,电荷灵敏度为34.626 pC/(m·s-2)时,可完成对微震信号的检测,且具有宽频率范围和高灵敏度。  相似文献   

16.
矢量传感器可以共点、同步测量振速、加速度等矢量信息,且具有一定的噪声抑制能力,具有重要的应用价值。铒镱共掺双偏振光纤激光器已被证明可用于实现易解调、结构小巧、易于复用、高灵敏度的光纤传感器。针对此类传感器,本文提出一种加速度传感器结构,通过限制质量块的横向位移,实现了一种双频干涉型光纤激光加速度矢量传感器。除了具有双偏振光纤激光器的一系列优点外,该传感器还具有良好的“8”字形指向性,并在1 kHz以下具有平坦的频率响应特性,对于后续双频干涉型光纤矢量传感器的实现具有重要的指导意义。  相似文献   

17.
该文提出了一种适用于低频测试的弛豫铁电单晶三轴加速度传感器的结构形式,加速度传感器每个坐标轴由一个单晶弯曲梁敏感元件组成.通过有限元仿真分析了弯曲梁结构中的单晶层厚度、基梁金属层厚度及基梁材料等结构尺寸参数对谐振频率及加速度灵敏度的影响,找到最优结构尺寸,研制了弛豫铁电单晶三轴加速度传感器样品并进行测试.测试结果表明,...  相似文献   

18.
基于弹性管的光纤布拉格光栅加速度传感研究   总被引:4,自引:4,他引:0  
为实现光纤光栅加速度测量,提出了一种基于弹性管的两点式封装光纤布拉格光栅(FBG)加速度传感器。首先理论分析了其传感原理,并建立了其响应灵敏度的解析表达式,通过引入加速度理想灵敏度的概念,讨论了此类型加速度灵敏度的频率响应;其次,基于该模型设计了FBG加速度计,实验研究了加速度的幅频响应特性、谐振频率和加速度的线性响应。结果表明:在小于共振频率的低频段具有较好的平坦区,加速度与波长具有较好的线性关系,线性度为99.8%,加速度响应灵敏度为63.0pm/G。实验值与理论值的相对误差为0.98%,实验与理论吻合的较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号