首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

A novel convex necessary and sufficient condition for state-feedback exponential stabilisability in discrete-time switched linear systems, whose modes are described by rank-one matrices, is reported and proved in the present communication. A switched linear system, of this class, is shown to be state-feedback exponentially stabilisable if and only if a set of linear matrix inequalities (LMIs) associated to the system is feasible. And the solvability of this set of LMIs associated to the system is shown to be equivalent to that of a set of (standard) linear inequalities associated to the system. It is also proved that each solution to this set of LMIs (associated to the system) yields, through explicit formulas, to an exponentially stabilising state-feedback mapping, and also to a Lyapunov function for the exponential stability of the trivial solution of the corresponding closed-loop system (obtained by means of that feedback mapping). And such a Lyapunov function is always represented by a number of quadratic functionals that equals the number of modes composing the switched system.  相似文献   

2.
This paper addresses the state-dependent stability problem of switched positive linear systems. Some exponential stability criteria are established on the given partitions of the nonnegative state space. First, a exponential stability of systems without delays is established with the help of a single linear co-positive Lyapunov function. When this does not seem possible, we also prove the stability by using multiple linear co-positive Lyapunov functions. Moreover, we extend this result to the delayed systems in terms of the single and multiple linear co-positive Lyapunov functionals respectively. The proposed results can be applied to the general systems without any special restriction. Some numerical examples are given to illustrate the effectiveness of our results.  相似文献   

3.
This paper studies the exponential stability problems of discrete‐time and continuous‐time impulsive positive switched systems with mixed (discrete and distributed) time‐varying delays, respectively. By constructing novel copositive Lyapunov‐Krasovskii functionals and using the average dwell time technique, delay‐dependent sufficient conditions for the solvability of considered problems are given in terms of fairly simple linear matrix inequalities. Compared with the most existing results, by introducing an extra real vector, restrictive conditions on derivative of the time‐varying delays (less than 1) are relaxed, thus the obtained improved stability criteria can deal with a wider class of continuous‐time positive switched systems with time‐varying delays. Finally, two simple examples are provided to verify the validity of theoretical results.  相似文献   

4.
In this paper, the exponential stability problem is investigated for a class of discrete‐time singular switched systems with time‐varying delay. By using a new Lyapunov functional and average dwell time scheme, a delay‐dependent sufficient condition is established in terms of linear matrix inequalities for the considered system to be regular, causal, and exponentially stable. Different from the existing results, in the considered systems the corresponding singular matrices do not need to have the same rank. A numerical example is given to demonstrate the effectiveness of the proposed result.  相似文献   

5.
In this paper, we present a quasi-convex optimisation method to minimise an upper bound of the dwell time for stability of switched delay systems. Piecewise Lyapunov–Krasovskii functionals are introduced and the upper bound for the derivative of Lyapunov functionals is estimated by free-weighting matrices method to investigate non-switching stability of each candidate subsystems. Then, a sufficient condition for the dwell time is derived to guarantee the asymptotic stability of the switched delay system. Once these conditions are represented by a set of linear matrix inequalities , dwell time optimisation problem can be formulated as a standard quasi-convex optimisation problem. Numerical examples are given to illustrate the improvements over previously obtained dwell time bounds. Using the results obtained in the stability case, we present a nonlinear minimisation algorithm to synthesise the dwell time minimiser controllers. The algorithm solves the problem with successive linearisation of nonlinear conditions.  相似文献   

6.
In this paper, sufficient conditions are provided for the stability of switched retarded and neutral time‐delay systems with polytopic‐type uncertainties. It is assumed that the delay in the system dynamics is time‐varying and bounded. Parameter‐dependent Lyapunov functionals are employed to obtain criteria for the exponential stability of the system in the form of linear matrix inequality (LMI). Free‐weighting matrices are then provided to express the relationship between the system variables and the terms in the Leibniz–Newton formula. Numerical examples are presented to show the effectiveness of the results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
This paper will investigate global exponential stability analysis for a class of switched positive nonlinear systems under minimum dwell time switching, whose nonlinear functions for each subsystem are constrained in a sector field by two odd symmetric piecewise linear functions and whose system matrices for each subsystem are Metzler. A class of multiple time-varying Lyapunov functions is constructed to obtain the computable sufficient conditions on the stability of such switched nonlinear systems within the framework of minimum dwell time switching. All present conditions can be solved by linear/nonlinear programming techniques. An example is provided to demonstrate the effectiveness of the proposed result.   相似文献   

8.
This paper proposes new sufficient conditions for the exponential stability and stabilization of linear uncertain polytopic time-delay systems. The conditions for exponential stability are expressed in terms of Kharitonov-type linear matrix inequalities (LMIs) and we develop control design methods based on LMIs for solving stabilization problem. Our method consists of a combination of the LMI approach and the use of parameter-dependent Lyapunov functionals, which allows to compute simultaneously the two bounds that characterize the exponetial stability rate of the solution. Numerical examples illustrating the conditions are given.  相似文献   

9.
The exponential H filtering problem of discrete‐time switched state‐delay systems under asynchronous switching is considered in this paper. The objective is to design a full‐order or reduced‐order switched filter guaranteeing the exponential stability with the weighted H performance of the filtering error system. A sufficient condition for the exponential stability with the weighted H performance of the filtering error system is provided based on delay‐dependent multiple Lyapunov‐Krasovskii functionals. The gains of the filter can be obtained by solving a set of linear matrix inequalities. A numerical example is presented to demonstrate the effectiveness of the developed results.  相似文献   

10.
This paper is concerned with the problems of absolute exponential stability and stabilization for a class of switched nonlinear systems whose system matrices are Metzler. Nonlinearity of the systems is constrained in a sector field, which is bounded by two odd symmetric piecewise linear functions. Multiple Lyapunov functions are introduced to deal with the stability of such nonlinear systems. Compared with some existing results obtained by the common Lyapunov function approach in the literature, the conservatism of our results is reduced. All present conditions can be solved by linear programming. Furthermore, the absolute exponential stabilization for the considered systems is designed by the state-feedback and average dwell time switching strategy. Two examples are also given to illustrate the validity of the theoretical findings.  相似文献   

11.
This article considers the robust exponential stability of uncertain switched stochastic systems with time-delay. Both almost sure (sample) stability and stability in mean square are investigated. Based on Lyapunov functional methods and linear matrix inequality techniques, new criteria for exponential robust stability of switched stochastic delay systems with non-linear uncertainties are derived in terms of linear matrix inequalities and average dwell-time conditions. Numerical examples are also given to illustrate the results.  相似文献   

12.
In this article we look into stability properties of strongly autonomous n-D systems, i.e. systems having finite-dimensional behaviour. These systems are known to have a first-order representation akin to 1-D state-space representation; we consider our systems to be already in this form throughout. We first define restriction of an n-D system to a 1-D subspace. Using this we define stability with respect to a given half-line, and then stability with respect to collections of such half-lines: proper cones. Then we show how stability with respect to a half-line, for the strongly autonomous case, reduces to a linear combination of the state representation matrices being Hurwitz. We first relate the eigenvalues of this linear combination with those of the individual matrices. With this we give an equivalent geometric criterion in terms of the real part of the characteristic variety of the system for half-line stability. Then we extend this geometric criterion to the case of stability with respect to a proper cone. Finally, we look into a Lyapunov theory of stability with respect to a proper cone for strongly autonomous systems. Each non-zero vector in the given proper cone gives rise to a linear combination of the system matrices. Each of these linear combinations gives a corresponding Lyapunov inequality. We show that the system is stable with respect to the proper cone if and only if there exists a common solution to all of these Lyapunov inequalities.  相似文献   

13.
This paper addresses two kinds of dual approaches to stability and stabilisation of uncertain switched positive systems under arbitrary switching and average dwell-time switching, respectively. The uncertainties in systems refer to polytopic ones. A new parameter-dependent switched linear copositive Lyapunov function is first proposed for uncertain switched positive systems. By using the new Lyapunov function associated with arbitrary switching and average dwell-time switching, respectively, sufficient conditions for the stability of the systems are established. Two alternative stability criteria based on two kinds of dual approaches are addressed. It is shown that the alternative criteria hold for not only the primal switched positive system but also its dual system. Then, the stabilisation of primal and dual switched positive systems under arbitrary switching and average dwell-time switching is solved, respectively. All present conditions are solvable in terms of linear programming. By some comparisons with existing results, the less conservativeness of the obtained results is verified. Finally, a practical example is provided to illustrate the effectiveness of the theoretical findings.  相似文献   

14.
We present a novel ultimate bound and invariant set computation method for continuous-time switched linear systems with disturbances and arbitrary switching. The proposed method relies on the existence of a transformation that takes all matrices of the switched linear system into a convenient form satisfying certain properties. The method provides ultimate bounds and invariant sets in the form of polyhedral and/or mixed ellipsoidal/polyhedral sets, is completely systematic once the aforementioned transformation is obtained, and provides a new sufficient condition for practical stability. We show that the transformation required by our method can easily be found in the well-known case where the subsystem matrices generate a solvable Lie algebra, and we provide an algorithm to seek such transformation in the general case. An example comparing the bounds obtained by the proposed method with those obtained from a common quadratic Lyapunov function computed via linear matrix inequalities shows a clear advantage of the proposed method in some cases.  相似文献   

15.
In this article, the stability analysis, the positive invariance of polyhedral sets and the design of state-feedback regulators for networked control systems (NCS) with bounded transmission delays, constant and unknown or time-varying, are investigated. The dynamics of the NCS is described by autoregressive-moving-average (ARMA) models. Contrary to former approaches based on quadratic Lyapunov functions, in this article polyhedral Lyapunov functions are used for both stability and positive invariance analysis and state-feedback synthesis. Then, based on the property that the exponential of a matrix can be expressed as a weighted sum of its constituent matrices, it is proven that the problems of determination of stability margins or the design of stabilising controllers can be reduced to linear programming optimisation problems. The use of ARMA models allows the development of methods for the design of state-feedback controllers satisfying state constraints or convergence rate specifications defined on the NCS state space and not on the state of an augmented state space representation.  相似文献   

16.
ABSTRACT

This paper is devoted to study the stability of switched singular stochastic linear systems with both stable and unstable subsystems. By using the method of multiple Lyapunov functions and the notion of average dwell time, we provide sufficient conditions for the exponential mean-square stability of switched singular stochastic systems in terms of a proper switching rule and the linear matrix inequalities. An example is given to illustrate the effectiveness of the obtained results.  相似文献   

17.
The robust exponential stability of integral delay systems with exponential kernels is investigated. Sufficient delay-dependent robust conditions expressed in terms of linear matrix inequalities and matrix norms are derived by using the Lyapunov–Krasovskii functional approach. The results are combined with a new result on quadratic stabilisability of the state-feedback synthesis problem in order to derive a new linear matrix inequality methodology of designing a robust non-fragile controller for the finite spectrum assignment of input delay systems that guarantees simultaneously a numerically safe implementation and also the robustness to uncertainty in the system matrices and to perturbation in the feedback gain.  相似文献   

18.
This paper addresses the robust reliable stabilisation problem for a class of uncertain switched systems with random delays and norm bounded uncertainties. The main aim of this paper is to obtain the reliable robust sampled-data control design which involves random time delay with an appropriate gain control matrix for achieving the robust exponential stabilisation for uncertain switched system against actuator failures. In particular, the involved delays are assumed to be randomly time-varying which obeys certain mutually uncorrelated Bernoulli distributed white noise sequences. By constructing an appropriate Lyapunov–Krasovskii functional (LKF) and employing an average-dwell time approach, a new set of criteria is derived for ensuring the robust exponential stability of the closed-loop switched system. More precisely, the Schur complement and Jensen's integral inequality are used in derivation of stabilisation criteria. By considering the relationship among the random time-varying delay and its lower and upper bounds, a new set of sufficient condition is established for the existence of reliable robust sampled-data control in terms of solution to linear matrix inequalities (LMIs). Finally, an illustrative example based on the F-18 aircraft model is provided to show the effectiveness of the proposed design procedures.  相似文献   

19.
本文通过利用平均驻留时间方法,研究一类具有不确定性非线性切换时延系统的指数稳定性问题。给出非切换系统的候选李雅普诺夫函数的衰减估计分析,然后以线性矩阵不等式的形式给出使系统保持指数稳定及鲁棒指数稳定的充分条件,同时也给出了系统状态指数衰减的具体的估计形式。  相似文献   

20.
This paper deals with the problems of robust reliable exponential stabilization and robust stochastic stabilization with H-infinity performance for a class of nonlinear uncertain time-delay stochastic systems with Markovian jumping parameters. The time delays are assumed to be dependent on the system modes. Delay-dependent conditions for the solvability of these problems are obtained via parameter-dependent Lyapunov functionals. Furthermore, it is shown that the desired state feedback controller can be designed by solving a set of linear matrix inequalities. Finally, the simulation is provided to demonstrate the effectiveness of the proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号