首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the problems of robust stochastic stabilization and H-infinity control for Markovian jump nonlinear singular systems with Wiener process via a fuzzy-control approach. The Takagi-Sugeno (T-S) fuzzy model is employed to represent a nonlinear singular system. The purpose of the robust stochastic stabilization problem is to design a state feedback fuzzy controller such that the closed-loop fuzzy system is robustly stochastically stable for all admissible uncertainties. In the robust H-infinity control problem, in addition to the stochastic stability requirement, a prescribed performance is required to be achieved. Linear matrix inequality (LMI) sufficient conditions are developed to solve these problems, respectively. The expressions of desired state feedback fuzzy controllers are given. Finally, a numerical simulation is given to illustrate the effectiveness of the proposed method.  相似文献   

2.
This paper is concerned with the problems of robust stochastic stabilization and robust H control for uncertain discrete‐time stochastic bilinear systems with Markovian switching. The parameter uncertainties are time‐varying norm‐bounded. For the robust stochastic stabilization problem, the purpose is the design of a state feedback controller which ensures the robust stochastic stability of the closed‐loop system irrespective of all admissible parameter uncertainties; while for the robust H control problem, in addition to the robust stochastic stability requirement, a prescribed level of disturbance attenuation is required to be achieved. Sufficient conditions for the solvability of these problems are obtained in terms of linear matrix inequalities (LMIs). When these LMIs are feasible, explicit expressions of the desired state feedback controllers are also given. An illustrative example is provided to show the effectiveness of the proposed approach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
This paper addresses the issue of robust reliable stabilization for a class of uncertain nonlinear stochastic systems with both discrete and distributed time-varying delays and possible occurrence of actuator faults. By constructing a new Lyapunov functional and using linear matrix inequality technique, a new set of sufficient conditions is established for the stochastic stability of the uncertain nonlinear stochastic systems. Then, sufficient conditions are obtained for the solvability of the robust stabilization problem via robust reliable controller. More precisely, the derived control law guarantees the robust stabilization of nonlinear stochastic systems in the presence of known actuator failure matrix and uncertainties. Further, the results are extended to study the stabilization of stochastic systems with unknown actuator failure matrix. Moreover, the obtained criteria are formulated in terms of LMIs and also the reliable controller can be designed in terms of the solutions to certain linear matrix inequalities. Finally, numerical examples with simulation result are presented to demonstrate the validity and less conservatism of the obtained results.  相似文献   

4.
《Systems & Control Letters》2004,51(3-4):203-215
This paper deals with the problems of robust stabilization and robust H control for discrete stochastic systems with time-varying delays and time-varying norm-bounded parameter uncertainties. For the robust stabilization problem, attention is focused on the design of a state feedback controller which ensures robust stochastic stability of the closed-loop system for all admissible uncertainties, while for the robust H control problem, a state feedback controller is designed such that, in addition to the requirement of the robust stochastic stability, a prescribed H performance level is also required to be satisfied. A linear matrix inequality (LMI) approach is developed to solve these problems, and delay-dependent conditions for the solvability are obtained. It is shown that the desired state feedback controller can be constructed by solving certain LMIs. An example is provided to demonstrate the effectiveness of the proposed approach.  相似文献   

5.
The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a discrete-time Markovian jump standard linear system, and the linear matrix inequality (LMI) conditions for the discrete-time Markovian jump singular systems to be regular, causal, stochastically stable, and stochastically stable with 7- disturbance attenuation are obtained, respectively. With these conditions, the robust state feedback stochastic stabilization problem and H-infinity control problem are solved, and the LMI conditions are obtained. A numerical example illustrates the effectiveness of the method given in the oaoer.  相似文献   

6.
This paper presents new results on the robust global stabilization and the gain assignment problems for stochastic nonlinear systems. Three stochastic nonlinear control design schemes are developed. Furthermore, a new stochastic gain assignment method is developed for a class of uncertain interconnected stochastic nonlinear systems. This method can be combined with the nonlinear small-gain theorem to design partial-state feedback controllers for stochastic nonlinear systems. Two numerical examples are given to illustrate the effectiveness of the proposed methodology.  相似文献   

7.
Molecular noises in gene networks come from intrinsic fluctuations, transmitted noise from upstream genes, and the global noise affecting all genes. Knowledge of molecular noise filtering in gene networks is crucial to understand the signal processing in gene networks and to design noise-tolerant gene circuits for synthetic biology. A nonlinear stochastic dynamic model is proposed in describing a gene network under intrinsic molecular fluctuations and extrinsic molecular noises. The stochastic molecular-noise-processing scheme of gene regulatory networks for attenuating these molecular noises is investigated from the nonlinear robust stabilization and filtering perspective. In order to improve the robust stability and noise filtering, a robust gene circuit design for gene networks is proposed based on the nonlinear robust stochastic stabilization and filtering scheme, which needs to solve a nonlinear Hamilton-Jacobi inequality. However, in order to avoid solving these complicated nonlinear stabilization and filtering problems, a fuzzy approximation method is employed to interpolate several linear stochastic gene networks at different operation points via fuzzy bases to approximate the nonlinear stochastic gene network. In this situation, the method of linear matrix inequality technique could be employed to simplify the gene circuit design problems to improve robust stability and molecular-noise-filtering ability of gene networks to overcome intrinsic molecular fluctuations and extrinsic molecular noises.  相似文献   

8.
In this paper, delay-dependent robust stabilization and H∞ control for uncertain stochastic Takagi-Sugeno (T-S) fuzzy systems with discrete interval and distributed time-varying delays are discussed. The purpose of the robust stochastic stabilization problem is to design a memoryless state feedback controller such that the closed-loop system is mean-square asymptotically stable for all admissible uncertainties. In the robust H∞ control problem, in addition to the mean-square asymptotic stability requirement, a prescribed H∞ performance is required to be achieved. Sufficient conditions for the solvability of these problems are proposed in terms of a set of linear matrix inequalities (LMIs) and solving these LMIs, a desired controller can be obtained. Finally, two numerical examples are given to illustrate the effectiveness and less conservativeness of our results over the existing ones.  相似文献   

9.
This paper considers the problems of robust non‐fragile stochastic stabilization and H control for uncertain time‐delay stochastic systems with time‐varying norm‐bounded parameter uncertainties in both the state and input matrices. Attention is focused on the design of memoryless state feedback controllers which are subject to norm‐bounded uncertainties. For both the cases of additive and multiplicative controller uncertainties, delay‐independent sufficient conditions for the solvability of the above problems are obtained. The desired state feedback controller can be constructed by solving a certain linear matrix inequality.  相似文献   

10.
The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a discrete-time Markovian jump standard linear system, and the linear matrix inequality (LMI) conditions for the discrete-time Markovian jump singular systems to be regular, causal, stochastically stable, and stochastically stable with °- disturbance attenuation are obtained, respectively. With these conditions, the robust state feedback stochastic stabilization problem and H-infinity control problem are solved, and the LMI conditions are obtained. A numerical example illustrates the effectiveness of the method given in the paper.  相似文献   

11.
Three parallel gaps in robust feedback control theory are examined: sufficiency versus necessity, deterministic versus stochastic uncertainty modeling, and stability versus performance. Deterministic and stochastic output-feedback control problems are considered with both static and dynamic controllers. The static and dynamic robust stabilization problems involve deterministically modeled bounded but unknown measurable time-varying parameter variations, while the static and dynamic stochastic optimal control problems feature state-, control-, and measurement-dependent white noise. General sufficiency conditions for the deterministic problems are obtained using Lyapunov's direct method, while necessary conditions for the stochastic problems are derived as a consequence of minimizing a quadratic performance criterion. The sufficiency tests are then applied to the necessary conditions to determine when solutions of the stochastic optimization problems also solve the deterministic robust stability problems. As an additional application of the deterministic result, the modified Riccati equation approach of Petersen and Hollot is generalized in the static case and extended to dynamic compensation.  相似文献   

12.
This paper deals with the problems of the global exponential stability and stabilization for a class of uncertain discrete-time stochastic neural networks with interval time-varying delay. By using the linear matrix inequality method and the free-weighting matrix technique, we construct a new Lyapunov–Krasovskii functional and establish new sufficient conditions to guarantee that the uncertain discrete-time stochastic neural networks with interval time-varying delay are globally exponential stable in the mean square. Furthermore, we extend our consideration to the stabilization problem for a class of discrete-time stochastic neural networks. Based on the state feedback control law, some novel delay-dependent criteria of the robust exponential stabilization for a class of discrete-time stochastic neural networks with interval time-varying delay are established. The controller gains are designed to ensure the global robust exponential stability of the closed-loop systems. Finally, numerical examples illustrate the effectiveness of the theoretical results we have obtained.  相似文献   

13.
Molecular noises in gene networks come from intrinsic fluctuations, transmitted noise from upstream genes, and the global noise affecting all genes. Knowledge of molecular noise filtering in gene networks is crucial to understand the signal processing in gene networks and to design noise-tolerant gene circuits for synthetic biology. A nonlinear stochastic dynamic model is proposed in describing a gene network under intrinsic molecular fluctuations and extrinsic molecular noises. The stochastic molecular-noise-processing scheme of gene regulatory networks for attenuating these molecular noises is investigated from the nonlinear robust stabilization and filtering perspective. In order to improve the robust stability and noise filtering, a robust gene circuit design for gene networks is proposed based on the nonlinear robust H infinity stochastic stabilization and filtering scheme, which needs to solve a nonlinear Hamilton-Jacobi inequality. However, in order to avoid solving these complicated nonlinear stabilization and filtering problems, a fuzzy approximation method is employed to interpolate several linear stochastic gene networks at different operation points via fuzzy bases to approximate the nonlinear stochastic gene network. In this situation, the method of linear matrix inequality technique could be employed to simplify the gene circuit design problems to improve robust stability and molecular-noise-filtering ability of gene networks to overcome intrinsic molecular fluctuations and extrinsic molecular noises.  相似文献   

14.
This paper investigates the problem of delay‐dependent robust stochastic stabilization and H control for uncertain stochastic nonlinear systems with time‐varying delay. System uncertainties are assumed to be norm bounded. Firstly, by using novel method to deal with the integral terms, robustly stochastic stabilization results are obtained for stochastic uncertain systems with nonlinear perturbation, and an appropriate memoryless state feedback controller can be chosen. Compared with previous results, the new technique can sufficiently utilize more negative items information. Then, robust H control for uncertain stochastic system with time‐varying delay and nonlinear perturbation is considered, and the controller is designed, which will guarantee that closed‐loop system is robustly stochastically stable with disturbance attenuation level. Finally, two numerical examples are listed to illustrate that our results are effective and less conservative than other reports in previous literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The natural instability of an inverted pendulum and its dynamics richness, in terms of nonlinearity, provide a nice apparatus to reproduce behaviors of analogous systems. In this way, it is useful to perform benchmark tests for new control approaches developed. In this paper, we address the main inverted pendulum problems: pendulum stabilization, tracking, and catching swing-up control. We show how robust recursive, control and filtering, techniques improve the system performance. They are developed to solve stochastic problems based on deterministic approaches, in order to decrease the worst influence of uncertainties. Experimental results of the proposed robust approach provide robust stability and performance despite parametric uncertainties, disturbances, and noise effects.  相似文献   

16.
This paper develops robust stability theorems and robust H control theory for uncertain impulsive stochastic systems. The parametric uncertainties are assumed to be time varying and norm bounded. Impulsive stochastic systems can be divided into three cases, namely, the systems with stable/stabilizable continuous‐time stochastic dynamics and unstable/unstabilizable discrete‐time dynamics, the systems with unstable/unstabilizable continuous dynamics and stable/stabilizable discrete‐time dynamics, and the systems in which both the continuous‐time stochastic dynamics and the discrete‐time dynamics are stable/stabilizable. Sufficient conditions for robust exponential stability and robust stabilization for uncertain impulsive stochastic systems are derived in terms of an average dwell‐time condition. Then, a linear matrix inequality‐based approach to the design of a robust H controller for each system is presented. Finally, the numerical examples are provided to demonstrate the effectiveness of the proposed approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
本文研究了随机不确定时滞系统的鲁棒稳定性与鲁棒H∞控制问题,系统的不确性具有凸多面体形式.利用线性矩阵不等式方法,通过依赖于参数的Lyapunov函数,得到了此类系统鲁棒随机镇定的充分条件.在此基础上,又给出了H∞状态反馈控制器的设计.  相似文献   

18.
In this paper, the robust stabilization problem is addressed for a class of high‐order stochastic nonlinear systems with output constraints and disturbances by using finite‐time control technique. One of the features of the considered stochastic systems is that the fractional powers are allowed to be any positive odd rational numbers, rather than grater than or equal to one. By constructing a novel tan‐type barrier Lyapunov function and using the adding a power integrator technique, the explicit steps on how to construct a backstepping‐like finite‐time controller have been developed to handle the robust stabilization and output constraint. Rigorous mathematical proof shows that the system states will finite‐time converge to a small region of the origin and the output constraint can be kept. Finally, a simulation example is given to illustrate the effectiveness of the proposed approach.  相似文献   

19.
针对一类在切换时刻具有脉冲行为的Markov切换随机系统,首先,利用多Lyapunov函数的方法研究系统的稳定性,得到系统依概率稳定的充分条件,该条件以线性矩阵不等式(LMI)的形式给出;然后,进一步对系统的稳定化以及鲁棒稳定性问题进行分析与设计,给出相应的状态反馈增益矩阵和脉冲增益矩阵的求解方法;最后,数值算例说明了所设计方法的有效性.  相似文献   

20.
参数不确定马尔可夫跳变系统的鲁棒适应控制   总被引:4,自引:0,他引:4  
针对具有参数不确定的线性马尔可夫跳变系统的鲁棒适应控制问题进行了研究.分析了切换系统切换律的可观测和不可观测情形.对于可观测的切换律,利用线性矩阵不等式和共同二次Lyapunov函数方法,得出的具有参数不确定的切换系统是鲁棒可镇定的;对于切换律符合不可观测的马尔可夫随机过程的情况,通过设计恰当的采样适应控制器得到系统随机可镇定的充分条件.并通过例子给出适应镇定控制器的算法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号