首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 745 毫秒
1.
Estimating near-surface moisture conditions from the reflectance spectra (400-2500 nm) of Sphagnum moss offers great opportunities for the use of remote sensing as a tool for large-scale detailed monitoring of near-surface peatland hydrological conditions. This article investigates the effects of changes in near-surface and surface moisture upon the spectral characteristics of Sphagnum moss. Laboratory-based canopy reflectance data were collected from two common species of Sphagnum subjected to drying and subsequent rewetting. Several spectral indices developed from the near infra-red (NIR) and shortwave infra-red (SWIR) liquid water absorption bands and two biophysical indices (REIP and the chlorophyll index) were correlated with measures of near-surface moisture. All spectral indices tested were significantly correlated with near-surface moisture (with r between 0.27 and 0.94). The strongest correlations were observed using indices developed from the NIR liquid water absorption features (fWBI980 and fWBI1200). However, a hysteretic response was observed in both NIR indices when the canopies were re-hydrated, a finding which may have implications for the timing of remote sensing image acquisition. The Moisture Stress Index (MSI), developed from the SWIR liquid water absorption feature also showed strong correlations with near-surface wetness although the range of moisture conditions over which the index was able to detect change was highly dependent on Sphagnum species. Of the biophysical spectral indices tested (REIP and the chlorophyll index), the most significant relationships were observed between the chlorophyll index and near-surface wetness. All spectral indices tested were species specific, and this is attributed to differences in canopy morphology between Sphagnum species. The potential for developing estimations of surface and near-surface hydrological conditions across northern peatlands using remote sensing technology is discussed.  相似文献   

2.
Existing vegetation indices and red-edge techniques have been widely used for the assessment of vegetation status and vegetation health from remote-sensing instruments. This study proposed and applied optimized Airborne Imaging Spectrometer for Applications (AISA) airborne hyperspectral indices in assessing and mapping stressed oil palm trees. Six vegetation indices, four red-edge techniques, a standard supervised classifier and three optimized AISA spectral indices were compared in mapping diseased oil palms using AISA airborne hyperspectral imagery. The optimized AISA spectral indices algorithms used newly defined reflectance values at wavelength locations of 734 nm (near-infrared (NIR)) and 616 nm (red). The selection of these two bands was based on laboratory statistical analysis using field spectroradiometer reflectance data. These two bands were then applied to the AISA airborne hyperspectral imagery using the three optimized algorithms for AISA data. The newly formulated AISA hyperspectral indices were D2 = R 616/R 734, normalized difference vegetation index a (NDVIa)?=?(R 734R 616)/(R 734?+?R 616) and transformed vegetation index a (TVIa)?=?((NDVIa?+?0.5)/(abs (NDVIa?+?0.5))?×?[abs (NDVIa?+?0.5)]1/2. The classification results from the optimized AISA hyperspectral indices were compared with the other techniques and the optimized AISA spectral indices obtained the highest overall accuracy. D2 and NDVIa obtained 86% of overall accuracy followed by TVIa with 84% of overall accuracy.  相似文献   

3.
Progress in assessing the feasibility for imaging fluorescence using the O2-A band with 1 nm full-width half-maximum (FWHM) bands centered at 757.5 and 760.5 nm is reported in this paper. Multispectral airborne data was acquired at 150 m above ground level in the thermal, visible and near infrared regions yielding imagery at 15 cm spatial resolution. Simultaneous field experiments conducted in olive, peach, and orange orchards (water stress trials), and an olive orchard (variety trial) enabled the detected variability in fluorescence emission to be examined as function of stress status. In a parallel modelling activity the coupled leaf-canopy reflectance-fluorescence model, FluorMOD, was used to assess fluorescence retrieval capability by the in-filling method, as well as by fluorescence indices from the published literature. Fluorescence retrievals using the in-filling method, the derivative index D702/D680 and reflectance indices R690/R630, R761-R757, and R761/R757 yielded the best results in the simulation study, while demonstrating insensitivity to leaf area index (LAI) variation. The fluorescence in-filling method, derivative index D702/D680, and R761-R757 were the indices least affected by chlorophyll a + b (Cab) variation. On the other hand, other published indices for fluorescence detection at leaf and canopy levels exhibited high sensitivity to variations in Cab and LAI, and therefore were considered less suitable for in-field fluorescence detection. The fluorescence signal extraction from airborne imagery using the in-filling method was validated through comparisons with field-measured steady-state fluorescence (Fs) using the PAM-2100 and GFS-3000 instruments, confirming simulation predictions. The water stress experiments conducted on olive and peach orchards demonstrated the feasibility of chlorophyll fluorescence (F) extraction at the tree level from the airborne imagery, yielding determination coefficients r2 = 0.57 (olive), and r2 = 0.54 (peach). Consistent results were obtained between airborne F and ground truth assimilation (A) measured in the olive variety field experiment under no water stress levels, yielding r2 = 0.71.  相似文献   

4.
A two-source (soil + vegetation) energy balance model using microwave-derived near-surface soil moisture as a key boundary condition (TSMSM) and another scheme using thermal-infrared (radiometric) surface temperature (TSMTH) were applied to remote sensing data collected over a corn and soybean production region in central Iowa during the Soil Moisture Atmosphere Coupling Experiment (SMACEX)/Soil Moisture Experiment of 2002 (SMEX02). The TSMSM was run using fields of near-surface soil moisture from microwave imagery collected by aircraft on six days during the experiment, yielding a root mean square difference (RMSD) between model estimates and tower measurements of net radiation (Rn) and soil heat flux (G) of approximately 20 W m− 2, and 45 W m− 2 for sensible (H) and latent heating (LE). Similar results for H and LE were obtained at landscape/regional scales when comparing model output with transect-average aircraft flux measurements. Flux predictions from the TSMSM and TSMTH models were compared for two days when both airborne microwave-derived soil moisture and radiometric surface temperature (TR) data from Landsat were available. These two days represented contrasting conditions of moderate crop cover/dry soil surface and dense crop cover/moist soil surface. Surface temperature diagnosed by the TSMSM was also compared directly to the remotely sensed TR fields as an additional means of model validation. The TSMSM performed well under moderate crop cover/dry soil surface conditions, but yielded larger discrepancies with observed heat fluxes and TR under the high crop cover/moist soil surface conditions. Flux predictions from the thermal-based two-source model typically showed biases of opposite sign, suggesting that an average of the flux output from both modeling schemes may improve overall accuracy in flux predictions, in effect incorporating multiple remote-sensing constraints on canopy and soil fluxes.  相似文献   

5.
Multitemporal archived imagery enables the monitoring of savannah woody cover, for ecological purposes. Compatibility in multitemporal, multiple sensor image data would facilitate the monitoring. The decommissioning of SPOT 5 (Système Pour l’Observation de la Terre 5) left a void in multispectral imagery at the 10 m spatial resolution of its high-resolution geometric (HRG) sensor. The subsequent launch of Sentinel 2 presented an opportunity for data continuity to monitor the savannah woody cover, using equivalent 10 m resolution multispectral instrument (MSI) bands. This study examined the integration potential of Sentinel 2 MSI with the longer archive HRG and Landsat 8 (Land Satellite 8) Operational Land Imager (OLI) imagery, in assessing savannah woody cover. Images of three semi-arid savannah sites acquired on same season dates that excluded herbaceous vegetation from the spectral signature were used: November 2014 (HRG) and December 2015 (MSI, OLI). Using equivalent green (G), red (R), and near infrared (NIR) bands at 10 m (MSI, HRG) and 30 m (OLI) resolution, the woody cover was mapped through subpixel classification. The mapped woody cover was compared for statistical differences using χ2 analysis at 10 m resolution (MSI, HRG) and at a degradation of the MSI and HRG images to the 30 m OLI pixel size. Conversion to top-of-atmosphere reflectance values facilitated inter-sensor correlation of G, R, and NIR reflectance for field sampling sites where woody cover was quantified. Inter-sensor regression functions in G, R, and NIR band MSI and HRG images were developed. The 10 m resolution classifications of woody cover were not statistically different. Due to spatial resolution similarity, SPOT 5 HRG multispectral imagery was established as suitable for integration with equivalent band MSI imagery in mapping the woody cover in a multitemporal analysis. For dense woody cover, Landsat 8 OLI imagery was more suitable for integration with MSI than HRG images due to higher radiometric sensitivity, which can permit monitoring physiology-related woody reflectance.  相似文献   

6.
Studies over the past 25 years have shown that measurements of surface reflectance and temperature (termed optical remote sensing) are useful for monitoring crop and soil conditions. Far less attention has been given to the use of radar imagery, even though synthetic aperture radar (SAR) systems have the advantages of cloud penetration, all-weather coverage, high spatial resolution, day/night acquisitions, and signal independence of the solar illumination angle. In this study, we obtained coincident optical and SAR images of an agricultural area to investigate the use of SAR imagery for farm management. The optical and SAR data were normalized to indices ranging from 0 to 1 based on the meteorological conditions and sun/sensor geometry for each date to allow temporal analysis. Using optical images to interpret the response of SAR backscatter (σo) to soil and plant conditions, we found that SAR σo was sensitive to variations in field tillage, surface soil moisture, vegetation density, and plant litter. In an investigation of the relation between SAR σo and soil surface roughness, the optical data were used for two purposes: (1) to filter the SAR images to eliminate fields with substantial vegetation cover and/or high surface soil moisture conditions, and (2) to evaluate the results of the investigation. For dry, bare soil fields, there was a significant correlation (r2=.67) between normalized SAR σo and near-infrared (NIR) reflectance, due to the sensitivity of both measurements to surface roughness. Recognizing the limitations of optical remote sensing data due to cloud interference and atmospheric attenuation, the findings of this study encourage further studies of SAR imagery for crop and soil assessment.  相似文献   

7.
The present study investigated the use of physiological indices calculated from hyperspectral remote sensing imagery as potential indicators of wine grape quality assessment in vineyards affected by iron deficiency chlorosis. Different cv. Tempranillo/110 Richter vineyards located in northern Spain, affected and non-affected by iron chlorosis, were identified for field and airborne data collection. Airborne campaigns imaged a total of 14 study areas in both 2004 and 2005 using the AHS hyperspectral sensor, which acquired 20 spectral bands in the VIS-NIR region. Field measurements were conducted in each study site to obtain leaf and grape physiological parameters potentially linked to wine quality. Simulations carried out with the rowMCRM radiative transfer model demonstrated the feasibility of estimating leaf chlorophyll a + b (Cab) content using TCARI/OSAVI from AHS spectral bands. In addition to traditional structural vegetation indices (NDVI) and successful canopy-level chlorophyll indices (TCARI/OSAVI), other innovative physiological indices sensitive to changes in carotenoid (Car) and anthocyanin (Anth) content in leaves were assessed from the imagery. The rowMCRM model simulations were used to evaluate canopy structural effects on these physiological indices as a function of the typical row-structured canopy variables in vineyards (LAI, crown width, row distances, Cab content and soil background effects). Modeling results concluded that Car (Gitelson-Car2) and Anth (Gitelson-Anth) indices were highly affected by canopy structure (Cw, Vs) and soil background (ρs). Field measurements of grape composition and quality were used to assess potential relationships with physiological indices sensitive to foliar pigment content (Cab, Car and Anth). NDVI and TCARI/OSAVI indices yielded lower relationships for CIRG and IMAD must quality parameters than Car and Anth physiological indices. These results suggest that the increase in carotenes and anthocyanins due to drought, thermal damage or micronutrient deficiencies is a better indicator to detect phenolic ripening difficulties for vines affected by iron chlorosis than chlorosis detection. Therefore, the potential use of physiological remote sensing indices related to carotene and anthocyanin pigments demonstrates their importance as grape quality indicators in vineyards affected by iron chlorosis.  相似文献   

8.
9.
Structural and functional analyses of ecosystems benefit when high accuracy vegetation coverages can be derived over large areas. In this study, we utilize IKONOS, Landsat 7 ETM+, and airborne scanning light detection and ranging (lidar) to quantify coniferous forest and understory grass coverages in a ponderosa pine (Pinus ponderosa) dominated ecosystem in the Black Hills of South Dakota. Linear spectral mixture analyses of IKONOS and ETM+ data were used to isolate spectral endmembers (bare soil, understory grass, and tree/shade) and calculate their subpixel fractional coverages. We then compared these endmember cover estimates to similar cover estimates derived from lidar data and field measures. The IKONOS-derived tree/shade fraction was significantly correlated with the field-measured canopy effective leaf area index (LAIe) (r2=0.55, p<0.001) and with the lidar-derived estimate of tree occurrence (r2=0.79, p<0.001). The enhanced vegetation index (EVI) calculated from IKONOS imagery showed a negative correlation with the field measured tree canopy effective LAI and lidar tree cover response (r2=0.30, r=−0.55 and r2=0.41, r=−0.64, respectively; p<0.001) and further analyses indicate a strong linear relationship between EVI and the IKONOS-derived grass fraction (r2=0.99, p<0.001). We also found that using EVI resulted in better agreement with the subpixel vegetation fractions in this ecosystem than using normalized difference of vegetation index (NDVI). Coarsening the IKONOS data to 30 m resolution imagery revealed a stronger relationship with lidar tree measures (r2=0.77, p<0.001) than at 4 m resolution (r2=0.58, p<0.001). Unmixed tree/shade fractions derived from 30 m resolution ETM+ imagery also showed a significant correlation with the lidar data (r2=0.66, p<0.001). These results demonstrate the power of using high resolution lidar data to validate spectral unmixing results of satellite imagery, and indicate that IKONOS data and Landsat 7 ETM+ data both can serve to make the important distinction between tree/shade coverage and exposed understory grass coverage during peak summertime greenness in a ponderosa pine forest ecosystem.  相似文献   

10.
This study was part of an interdisciplinary research project on soil carbon and phytomass dynamics of boreal and arctic permafrost landscapes. The 45 ha study area was a catchment located in the forest tundra in northern Siberia, approximately 100 km north of the Arctic Circle.The objective of this study was to estimate aboveground carbon (AGC) and assess and model its spatial variability. We combined multi-spectral high resolution remote sensing imagery and sample based field inventory data by means of the k-nearest neighbor (k-NN) technique and linear regression.Field data was collected by stratified systematic sampling in August 2006 with a total sample size of n = 31 circular nested sample plots of 154 m2 for trees and shrubs and 1 m2 for ground vegetation. Destructive biomass samples were taken on a sub-sample for fresh weight and moisture content. Species-specific allometric biomass models were constructed to predict dry biomass from diameter at breast height (dbh) for trees and from elliptic projection areas for shrubs.Quickbird data (standard imagery product), acquired shortly before the field campaign and archived ASTER data (Level-1B product) of 2001 were geo-referenced, converted to calibrated radiances at sensor and used as carrier data. Spectral information of the pixels which were located in the inventory plots were extracted and analyzed as reference set. Stepwise multiple linear regression was applied to identify suitable predictors from the set of variables of the original satellite bands, vegetation indices and texture metrics. To produce thematic carbon maps, carbon values were predicted for all pixels of the investigated satellite scenes. For this prediction, we compared the kNN distance-weighted classifier and multiple linear regression with respect to their predictions.The estimated mean value of aboveground carbon from stratified sampling in the field is 15.3 t/ha (standard error SE = 1.50 t/ha, SE% = 9.8%). Zonal prediction from the k-NN method for the Quickbird image as carrier is 14.7 t/ha with a root mean square error RMSE = 6.42 t/ha, RMSEr = 44%) resulting from leave-one-out cross-validation. The k-NN-approach allows mapping and analysis of the spatial variability of AGC. The results show high spatial variability with AGC predictions ranging from 4.3 t/ha to 28.8 t/ha, reflecting the highly heterogeneous conditions in those permafrost-influenced landscapes. The means and totals of linear regression and k-NN predictions revealed only small differences but some regional distinctions were recognized in the maps.  相似文献   

11.
High spatial resolution QuickBird satellite data have provided new opportunities for remote sensing applications in agriculture. In this study, image-based algorithms for atmospheric correction were evaluated on QuickBird imagery for retrieving surface reflectance (ρλ) of corn and potato canopies in Minnesota. The algorithms included the dark object subtraction technique (DOS), the cosine approximation model (COST), and the apparent reflectance model (AR). The comparison with ground-based measurements of canopy reflectance during a 3-year field campaign indicated that the AR model generally overestimated ρλ in the visible bands, but underestimated ρλ in the near infrared (NIR) band. The DOS-COST model was most effective for the visible bands and produced ρλ with the root mean square errors (RMSE) of less than 0.01. However, retrieved ρλ in the NIR band were more than 20% (mean relative difference or MRD) lower than ground measurements and the RMSE was as high as 0.16. The evaluation of the COST model showed that atmospheric transmittance (Tλθ) was substantially overestimated on humid days, particularly for the NIR band because of the undercorrection of water vapor absorption. Alternatively, a contour map was developed to interpolate appropriate Tλθ for the NIR band for clear days under average atmospheric aerosol conditions and as a function of precipitable water content and solar zenith angle or satellite view angle. With the interpolated Tλθ, the accuracy of NIR band ρλ was significantly improved where the RMSE and MRD were 0.06 and 0.03%, respectively, and the overall accuracy of ρλ was acceptable for agricultural applications.  相似文献   

12.
Ecologists and conservationists need accurate and replicable tools for monitoring wetland conditions in order to develop and implement adaptive management strategies efficiently. The Rhone Delta (Camargue) in southern France encloses 9200 ha of fragmented reed marshes actively managed for reed harvesting, waterfowl hunting or cattle grazing, and holding significant numbers of vulnerable European birds. We used multi-season SPOT-5 data in conjunction with ground survey to assess the predictive power of satellite imagery in modelling indicators of reed structure (height, diameter, density and cover of green/dry stems) relevant to ecosystem management and bird ecology. All indicators could be predicted accurately with a combination of bands (SWIR, NIR) and indices (SAVI, OSAVI, NDWI, DVI, DVW, MSI) issued from scenes of March, June, July, September or December and subtraction between these. All models were robust when validated with an independent set of satellite and field data. The high spatial resolution of SPOT-5 scenes (pixel of 10 × 10 m) permits the monitoring of detailed attributes characterizing the reed ecosystem across a large spatial extent, providing a scientifically-based, replicable tool for managers, stakeholders and decision-makers to follow wetland conditions in the short and long-term. Combined with models on the ecological requirements of vulnerable bird species, these tools can provide maps of potential species ranges at spatial extents that are relevant to ecosystem functioning and bird populations.  相似文献   

13.
Soil moisture estimation in a semiarid rangeland using ERS-2 and TM imagery   总被引:2,自引:0,他引:2  
Soil moisture is important information in semiarid rangelands where vegetation growth is heavily dependent on the water availability. Although many studies have been conducted to estimate moisture in bare soil fields with Synthetic Aperture Radar (SAR) imagery, little success has been achieved in vegetated areas. The purpose of this study is to extract soil moisture in sparsely to moderately vegetated rangeland surfaces with ERS-2/TM synergy. We developed an approach to first reduce the surface roughness effect by using the temporal differential backscatter coefficient (Δσwet-dry0). Then an optical/microwave synergistic model was built to simulate the relationship among soil moisture, Normalized Difference Vegetation Index (NDVI) and Δσwet-dry0. With NDVI calculated from TM imagery in wet seasons and Δσwet-dry0 from ERS-2 imagery in wet and dry seasons, we derived the soil moisture maps over desert grass and shrub areas in wet seasons. The results showed that in the semiarid rangeland, radar backscatter was positively correlated to NDVI when soil was dry (mv<10%), and negatively correlated to NDVI when soil moisture was higher (mv>10%). The approach developed in this study is valid for sparse to moderate vegetated areas. When the vegetation density is higher (NDVI>0.45), the SAR backscatter is mainly from vegetation layer and therefore the soil moisture estimation is not possible in this study.  相似文献   

14.
15.
Relationships of plant species richness with spectral indices derived from airborne hyperspectral image data were evaluated for several habitat-types on Horn Island, Mississippi, northern Gulf of Mexico. A 126-band hyperspectral data cube of Horn Island acquired by the HyMap imaging system covered the 450–2500 nm spectrum at a 3 m Ground Sample Distance (GSD). Reflectance spectra were extracted from 5–11 HyMap pixels representing each of 95, 15-m vegetation line transects that were established randomly on the island. In simple regressions, no index related to richness when data from all habitat-types were combined. However, a number of reflectance and spectral derivative indices related significantly (p  0.05) with richness when habitat-types were considered separately. Only those indices which passed a fidelity test based on the consistency of index response to changes in plant and environmental moisture were selected as potentially reliable indicators of richness. Transect coefficient of variation (CV) for R1056/R966 and R920/R834 related negatively with richness in meadows and transition zones, respectively. The CV of R951/R1100 and R904 related negatively with woodland richness. Negative regression slopes, field observations and spectral mixtures indicated that richness in these habitats declined with increased bare soil exposure. In marsh habitat, positive relationships of richness with mean R618/R2475 or the CV of R514/R2459 were explained by the increasing presence and patchy distribution of broadleaved vegetation in the progression from wetter, low-richness sites to slightly-elevated, higher-richness sites. Present results combined with those of a previous grassland study suggested that remotely-sensed indicators of soil exposure may be generally useful in the assessment of plant species richness in mesic habitats.  相似文献   

16.
This study focuses on the potential of satellite hyperspectral imagery to monitor vegetation biophysical and biochemical characteristics through narrow-band indices and different viewing angles. Hyperspectral images of the CHRIS/PROBA sensor in imaging mode 1 (5 observation angles, 62 bands, 410-1005 nm) were acquired throughout a two-year period for a Mediterranean ecosystem fully covered by the semi-deciduous shrub Phlomis fruticosa. During each acquisition, coincident ecophysiological field measurements were conducted. Leaf area index (LAI), leaf biochemical content (chlorophyll a, chlorophyll b, carotenoids) and leaf water potential were measured. The hyperspectral images were corrected for coherent noises, cloud and atmosphere, in order to produce ground reflectance images. The reflectance spectrum of each image was used to calculate a variety of vegetation indices (VIs) that are already published in relevant literature. Additionally, all combinations of the 62 bands were used in order to calculate Normalized Difference Spectral Indices (NDSI(x,y)) and Simple Subtraction Indices (SSI(x,y)). The above indices along with raw reflectance and reflectance derivatives were examined for linear relationship with the ground-measured variables and the strongest relationships were determined. It is concluded that higher observation angles are better for the extraction of biochemical indices. The first derivative of the reflectance spectra proved to be very useful in the prediction of all measured variables. In many cases, complex and improved spectral indices that are proposed in the literature do not seem to be more accurate than simple NDSIs such as NDVI. Even traditional broadband NDVI is proved to be adequate in LAI prediction, while green bands seem also very useful. However, in biochemical estimation narrow bands are necessary. Indices that incorporate red, blue and IR bands, such as PSRI, SIPI and mNDVI presented good performance in chlorophyll estimation, while CRI did not show any relevance to carotenoids and WI was poorly correlated to water potential. Moreover, analyses indicated that it is very important to use a near red-edge band (701 nm) for effective chlorophyll index design. SSIs that incorporate 701 nm with 511 or 605 nm showed best performance in chlorophyll determination. For carotenoid estimation, a band on the edge of carotenoid absorption (511 nm) combined with a red band performed best, while a normalized index of two water absorption bands (945, 971 nm) proved to be an effective water index. Finally, the attempt to investigate stress conditions through pigment ratios resulted in the use of the band centred at 701 nm.  相似文献   

17.
Nonnative plant species are causing enormous ecological and environmental impacts from local to global scale. Remote sensing images have had mixed success in providing spatial information on land cover characteristics to land managers that increase effective management of invasions into native habitats. However, there has been limited evaluation of the use of hyperspectral data and processing techniques for mapping specific invasive species based on their spectral characteristics. This research evaluated three different methods of processing hyperspectral imagery: minimum noise fraction (MNF), continuum removal, and band ratio indices for mapping iceplant (Carpobrotus edulis) and jubata grass (Cortaderia jubata) in California's coastal habitat. Validation with field sampling data showed high mapping accuracies for all methods for identifying presence or absence of iceplant (97%), with the MNF procedure producing the highest accuracy (55%) when the classes were divided into four different densities of iceplant.  相似文献   

18.
Red-attack damage caused by mountain pine beetle (Dentroctonus ponderosa Hopkins) infestation in stands of lodgepole pine (Pinus contorta) in the Prince George Forest Region of British Columbia was examined using multitemporal Landsat-7 ETM+ imagery acquired in 1999, 2000, and 2001. The image data were geometrically and atmospherically corrected, and processed using the Tasseled Cap Transformation (TCT) to obtain wetness indices. The final steps included pixel subtraction, enhancement, and thresholding of the wetness index differences. The resulting enhanced wetness difference index (EWDI) was used to interpret spectral patterns in stands with confirmed (through aerial survey) red-attack damage in 2001, and these EWDI patterns were compared to the patterns of reflectance in normal-colour composites. We stratified the aerial survey dataset into two levels and used the EWDI to discriminate classes of 10-29 red-attack trees and 30-50 red-attack trees, and a sample of healthy forest collected from inventory data. Classification accuracy of red-attack damage based on the EWDI ranged from 67% to 78% correct.  相似文献   

19.
Remote sensing of forest vertical structure is possible with lidar data, but lidar is not widely available. Here we map tropical dry forest height (RMSE = 0.9 m, R2 = 0.84, range 0.6-7 m), and we map foliage height profiles, with a time series of Landsat and Advanced Land Imager (ALI) imagery on the island of Eleuthera, The Bahamas, substituting time for vertical canopy space. We also simultaneously map forest disturbance type and age. We map these variables in the context of avian habitat studies, particularly for wintering habitat of an endangered Nearctic-Neotropical migrant bird, the Kirtland's Warbler (Dendroica kirtlandii). We also illustrate relationships between forest vertical structure, disturbance type and counts of forage species important to the Kirtland's Warbler. The ALI imagery and the Landsat time series are both critical to the result for forest height, which the strong relationship of forest height with disturbance type and age facilitates. Also unique to this study is that seven of the eight image time steps are cloud-cleared images: mosaics of the clear parts of several cloudy scenes. We created each cloud-cleared image, including a virtually seamless ALI image mosaic, with regression tree normalization. We also illustrate how viewing time series imagery as red-green-blue composites of tasseled cap wetness (RGB wetness composites) aids reference data collection for classifying tropical forest disturbance type and age. Our results strongly support current Landsat Program production of co-registered imagery, and they emphasize the value of seamless time series of cloud-cleared imagery.  相似文献   

20.
Empirical airborne remote-sensing relationships were examined to estimate chlorophyll a concentration in the first optical depth (chlFOD) of coastal waters of Afgonak/Kodiak Islands during July-August 2002. Band-ratio and spectral-curvature models were tested using satellite remote-sensing reflectance (Rrs(λ)) measurements. Additional shipboard and airborne Rrs(λ) data were also analysed to evaluate consistency of proposed chlFOD-Rrs(λ) relationships. Validation of chlorophyll algorithms was performed using data collected in the northern-part of the Gulf of Alaska and Bering Sea during 1996, 2002, and 2003 cruises. Likewise, oceanographic conditions during the surveys were typified to interpret variability of chlFOD fields. The SeaWiFS band-ratio algorithm OC2d was the most sensitive Rrs combination (Rrs(509)/Rrs(553)) to detect chlFOD variability. Conversely, OC2a (Rrs(412)/Rrs(553)) had the lowest performance to derive chlFOD values. No valid statistical regressions were established for spectral-curvature relationships in the blue spectrum (< 500 nm). Fertile waters (> 5 mg m− 3) were preferentially located over shallow banks (∼50 m) and at the entrance of the bays. The approach used in this study to derive chlFOD values could be universal for Alaskan coastal waters. However, chlFOD-Rrs(λ) relationships must be calibrated locally for a given season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号