首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
水合物动力学抑制剂作为低液量抑制剂,其可应用于深水流动保障风险控制水合物冻堵问题,受到国内外研究者的广泛关注。本文重点阐述了动力学抑制剂的可承受最大过冷度和对诱导时间的延长这两个评价指标,同时梳理了动力学抑制剂对水合物生成及分解过程影响的研究成果。总体而言,可承受最大过冷度越大、延长诱导时间程度越强的动力学抑制剂,抑制水合物生成并保障流动安全的可靠性越高;动力学抑制剂对水合物生成与分解过程存在复杂的影响规律。本文将其对气体消耗速率、气体消耗量和形态,分解温度、时间和分解速率,“记忆效应”等影响进行了分析。结合上述研究成果,总结了动力学抑制剂对水合物的影响机理,特别是提出了化学型动力学抑制剂对水合物吸附抑制机理的概念示意图。最后,给出了未来深入开展动力学抑制剂研究的建议。  相似文献   

2.
Gas hydrate-caused pipeline plugging is an industrial nuisance for petroleum flow assurance that calls for technological innovations. Traditional thermodynamic inhibitors such as glycols and inorganic salts suffer from high dosing, environmental unfriendliness, corrosiveness, and economical burden. The development and use of kinetic hydrate inhibitors (KHIs), mostly polymeric compounds, with their inhibiting effects on hydrate nucleation and growth are considered an effective and economically viable chemical treatment for hydrate prevention. However, the actual performance of a KHI candidate is dependent on various factors including its chemical structure, molecular weight, spatial configuration, effective concentration, pressure and temperature, evaluation methods, use of other additives, etc. This review provides a short but systematic overview of the fundamentals of natural gas hydrates, the prevailing categories of polymeric kinetic hydrate inhibitors with proposed inhibition mechanisms, and the various synergists studied for boosting the KHI performance. Further research endeavors are in need to unveil the KHI working modes under different conditions. The conjunctive use of KHIs and synergists may facilitate the commercial application of effective KHIs to tackle the hydrate plugging problem in the oil and gas flow assurance practices.  相似文献   

3.
Molecular dynamics was employed to study the inhibition mechanism of vinyl lactam-based kinetic hydrate inhibitors (KHIs). By comparing the inhibition functions of the same KHIs at different initial locations, we found that the KHI molecules on the surface of hydrate nuclei could obviously prolong the hydrate induction time and exhibited the best inhibition effect. The impacts of KHIs on the methane migration and the arrangement of H2O molecules were analyzed at the molecular level. A gas-adsorbing mechanism for KHIs (i.e., the KHIs with an excellent gas adsorption ability could reduce the supersaturation of methane in the aqueous solution, reinforce the migration resistance of methane to the nucleus, and further inhibit the hydrate growth) was proposed. In addition, the conformations of KHI polymer molecules in the aqueous solution are closely related to their inhibitory effect, that is, stretched skeletons and well-organized structures would maximize their inhibitory effect.  相似文献   

4.
Kinetic hydrate inhibitors (KHIs) are water-soluble polymers designed to delay gas hydrate formation in gas and oilfield operations. Inhibition of growth of gas hydrate crystals is one of the mechanisms by which KHIs have been proposed to act. One class of commercial KHIs is the hyperbranched poly(ester amide)s. We have investigated the ability of a range of structurally different hyperbranched poly(ester amide)s to inhibit the crystal growth of tetrahydrofuran (THF) hydrate which forms a Structure II clathrate hydrate, the most common gas hydrate structure encountered in the upstream oil and gas industry. The results indicate that there is an optimum size of hydrophobic groups attached to the succinyl part of the polymer, which gives best crystal growth inhibition. However, total inhibition was impossible to achieve even at a concentration of 8000 ppm of one of the best polymers at a subcooling of 3.4 °C, tentatively suggesting that polymer adsorption onto natural gas hydrate crystal surfaces is probably not the primary mechanism of kinetic inhibition operating in field applications with this class of KHI.  相似文献   

5.
Natural gas hydrate inhibitor has been serving the oil and gas industry for many years. The development and search for new inhibitors remain the focus of research. In this study, the solution polymerization method was employed to prepare poly(N-vinyl caprolactam-co-butyl methacrylate) (P(VCap-BMA)), as a new kinetic hydrate inhibitor (KHI). The inhibition properties of P(VCap-BMA) were investigated by tetrahydrofuran (THF) hydrate testing and natural gas hydrate forming and compared with the commercial KHIs. The experiment showed that PVCap performed better than copolymer P(VCap-BMA). However, low doses of methanol or ethylene glycol are compounded with KHIs. The compounding inhibitors show a synergistic inhibitory effect. More interesting is the P(VCap-BMA)-methanol system has a better inhibitory effect than the PVCap-methanol system. 1% P(VCap-BMA) + 5% methanol presented the best inhibiting performance at subcooling 10.3 ℃, the induction time of natural gas hydrate was 445 min. Finally, the interaction between water and several dimeric inhibitors compared by natural bond orbital (NBO) analyses and density functional theory (DFT) indicated that inhibitor molecules were able to form the hydrogen bond with the water molecules, which result in gas hydrate inhibition. These exciting properties make the P(VCap-BMA) compound hydrate inhibitor promising candidates for numerous applications in the petrochemical industry.  相似文献   

6.
万丽  梁德青 《化工学报》2022,73(2):894-903
目前用于天然气水合物防治的工业动力学抑制剂主要是水溶性聚合物,如聚乙烯基吡咯烷酮(PVP)、聚乙烯基己内酰胺(PVCap)、Gaffix VC-713等,然而生物降解性低限制了其工业应用。因此,开发环保型的抑制剂具有重要意义。实验采用易生物降解的海藻酸钠与PVCap的单体接枝共聚,合成一类新型水合物动力学抑制剂NaAlg-g-PVCap,结合最大过冷度及耗气量评价了新型抑制剂在水合物生成过程中的抑制性能,并通过BOD5/COD值评价了新型抑制剂的生物降解性。结果表明低剂量[0.25%(质量)]下NaAlg-g-PVCap的最大耐受过冷度优于PVP K90,但低于PVCap,且随着添加剂量增大而微弱降低;在其最大耐受过冷度以下(ΔTsub=5℃),NaAlg-g-PVCap表现出较好的水合物成核和生长抑制作用,其体系水合物初始生长速率值约只为纯水体系的 1/10,也远高于PVP体系,且总耗气量相比纯水及PVP体系减少了60%以上,与PVCap体系接近,但随着过冷度增大,NaAlg-g-PVCap成核抑制作用下降明显,这可能是共聚物中两部分共同作用的结果;同时,NaAlg-g-PVCap相比PVCap其生物降解性提高了26%, 倾向于易降解。说明PVCap与NaAlg共聚后优化了整体的性能,表现出较好的水合物抑制性能和生物降解性。  相似文献   

7.
Injecting inhibitors is the most commonly used method in the oil and gas industry to solve the problem of blockage caused by hydrate formation during pipeline transportation. However, most of the kinetic hydrate inhibitors (KHIs) are strictly limited by weak inhibition performance and low subcooling. Ionic liquids, a kind of green solvent, have been recognized to act as excellent thermodynamic inhibitors on methane hydrate formation. So, it is proposed to add the ionic liquids into KHIs to improve their overall performance. In this paper, the kinetic effects of an ionic liquid N-butyl-N-methylpyrrolidine tetrafluoroborate ([BMP][BF4]), a commercial kinetic inhibitor polyvinyl pyrrolidone (PVP K90) and their mixtures with different mass ratios on the methane hydrate formation were experimentally studied at 8.0 K subcooling and two concentrations [1.0%(mass) and 2.0%(mass)]. The best mass ratio of the compound inhibitor was determined. Moreover, the crystal structures and cage occupancy characteristics of methane hydrates formed without and with inhibitors at different mass concentrations and composition ratios were measured by using powder X-ray diffraction (PXRD) and low-temperature Laser Raman spectrometers. It was found that the addition of inhibitors did not change the crystal structure of methane hydrate, but affected the cage occupancies and hydration numbers. Based on the results from macroscopic kinetics and microscopic structure tests, the inhibition mechanism of compound inhibitors was proposed.  相似文献   

8.
Kinetic hydrate inhibitors (KHIs) are used to prevent gas hydrate formation in gas and oilfield operations. Recently, a new KHI test method was reported in which hydrates are formed and re-melted just above the equilibrium temperature, before the fluids are re-cooled and the performance of the chemical as a KHI is determined. The method, which we have called the superheated hydrate test method, is claimed to be more reliable for KHI ranking in small equipment, giving less scattering in the hold time data due to avoiding the stochastic nature of the first hydrate formation. We have independently investigated this superheated hydrate test method in steel and sapphire autoclave tests using a gas mixture forming Structure II hydrates and a liquid hydrocarbon phase, which was necessary for satisfactory results. Our results indicate that hold times are shorter than using non-superheated hydrate test methods, but they are more reproducible with less scattering. The reduced scattering occurs in isothermal or slow ramping experiments even when the hydrates are melted at more than 10 °C above the equilibrium temperature (Teq). However, if a rapid cooling method is used, the improved reproducibility is retained when melting hydrate at 2.4 °C above Teq but lost when warming to 8.4 °C above Teq. Using the ramping test method, most, but not all the KHIs tested agreed with the same performance ranking obtained using traditional non-superheated hydrate test methods. This may be related to the variation in the dissociation temperature of gas hydrates with different KHIs and different KHI inhibition mechanisms. Results also varied between different size autoclave equipments.  相似文献   

9.
气体水合物研究进展   总被引:3,自引:0,他引:3       下载免费PDF全文
It is of great significance to study gas hydrate because of following reasons. (1) Most organic carbon in the earth reserves in the form of natural gas hydrate, which is considered as a potential energy resource for the survival of human being in the future. (2) A series of novel technologies are based on gas hydrate. (3) Gas hydrate may lead to many hazards including plugging of oil/gas pipelines, accelerating global warming up, etc. In this paper, the latest progresses in exploration and exploitation of natural gas hydrate, the development of hydrate-based technologies including gas separation, gas storage, CO2 sequestration via forming hydrate, as well as the prevention of hydrate hazards are reviewed. Additionally, the progresses in the fundamental study of gas hydrate, including the thermodynamics and kinetics are also reviewed. A prospect to the future of gas hydrate research and application is given.  相似文献   

10.
任俊杰  龙臻  梁德青 《化工学报》2020,71(11):5256-5264
注入抑制剂是油气行业解决管道输送过程因水合物生成而引发的堵塞问题最常用的方法。但现有大多数动力学抑制剂(KHIs)存在抑制性能不足、高过冷度条件下会失效等问题,可应用场合大大受限。离子液体作为绿色溶剂对甲烷水合物具有良好的热力学抑制作用。为改进KHIs的性能,提出将离子液体与KHIs复合。本文实验考察8.0 K过冷度、两种浓度下[1.0%(质量)、2.0%(质量)]离子液体N-丁基-N-甲基吡咯烷四氟硼酸盐([BMP][BF4])、聚乙烯基吡咯烷酮(PVP K90)以及二者复配构成的复合型抑制剂对甲烷水合物抑制规律,得到了最佳组分配比。利用粉末X射线衍射(PXRD)和低温激光拉曼光谱测量了不同抑制剂体系中形成的甲烷水合物晶体微观结构和晶穴占有率,发现添加抑制剂不会改变sI型甲烷水合物晶体结构,但会影响水合物晶体的大、小笼占有率和水合数。结合宏观动力学实验和微观结构测试结果,揭示离子液体与PVP K90复合抑制剂的抑制机理。  相似文献   

11.
Natural gas hydrates easily form in pipelines, causing potential safety issues during oil and gas production and transportation. Injecting gas hydrate inhibitors is one of the most effective methods for preventing gas hydrate formation or aggregation. However, some thermodynamic hydrate inhibitors are toxic and harmful to the environment, whereas degradation of kinetic inhibitors is difficult. Therefore, environmentally friendly and easily biodegradable novel green inhibitors have been proposed and investigated. This paper provides a short but systematic review of the inhibitory performance of amino acids, antifreeze proteins, and ionic liquids. For different hydrate formation systems, the influences of the inhibitor type, structure, and concentration on the inhibitory effects are summarized. The mechanism of green inhibitors as kinetic inhibitors is also discussed. The progress described here will facilitate further developments of such green inhibitors for gas hydrate formation.  相似文献   

12.
Low dosage kinetic hydrate inhibitors (KHIs) are a kind of alternative chemical additives to high dosage thermodynamic inhibitors for preventing gas hydrate formation in oil & gas production wells and transportation pipelines. In this paper, a new KHI, poly (N-vinyl caprolactam)-co-tert-butyl acrylate (PVCap-co-TBA), was successfully synthesized with N-vinyl caprolactam (NVCap) and tert-butyl acrylate. The kinetic inhibition performances of PVCap-co-TBA on the formations of both structure I methane hydrate and structure II natural gas hydrate were investigated by measuring the onset times of hydrate formation under different conditions and compared with commercial KHIs such as PVP, PVCap and inhibex 501. The results indicated that PVCap-co-TBA outperformed these widely applied inhibitors for both structure I and structure II hydrates. At the same dosage of KHI, the maximum tolerable degree of subcooling under which the onset time of hydrate formation exceeded 24 hours for structure I hydrate was much lower than that for structure II hydrate. The inhibition strength increased with the increasing dosage of PVCap-co-TBA; The maximum tolerable degree of subcooling for the natural gas hydrate is more than 10 K when the dosage was higher than 0.5% (mass) while it achieved 12 K when that dosage rose to 0.75% (mass). Additionally, we found polypropylene glycol could be used as synergist at the dosage of 1.0 % (mass) or so, under which the kinetic inhibition performance of PVCap-co-TBA could be improved significantly. All evaluation results demonstrated that PVCap-co-TBA was a very promising KHI and a competitive alternative to the existing commercial KHIs.  相似文献   

13.
过去的几十年中,对于水合物的研究不单单集中在抑制天然气水合物的生成上,基于水合物的生成利用技术也得到了广泛的研究。基于水合物的生成利用技术是环保和可持续的新技术,利用不同气体生成水合物相平衡条件的差异,可用于气体分离、置换开采。由于水合物具有较高的气体浓度,可用于气体的存储。利用水合物较高的化解潜热,可将其用于蓄冷。本文综述了国内外水合物技术的研究应用现状,分析了水合物技术在气体分离与存储、溶液浓缩分离、蓄冷、二氧化碳(CO2)置换开采等领域有前景的研究方向。但是其水合反应速率慢、生成压力高、后期分离困难,极大地限制了水合物利用技术的工业应用。展望了水合物技术未来的研究发展方向,开发安全、高效和环保的水合物促进剂,开发高效水合物反应设备,开发连续水合物工艺,以便早日实现工业应用。  相似文献   

14.
随着天然气事业的发展,国外在天然气水合物抑制剂的研究方面成熟,常采用加热和加注抑制剂的方法来防止水合物的生成。国内在气田开发实践中,主要采用国外成熟技术,但在应用中还需要进一步完善。吉林油田长岭1号气田CO2平均含量约30%,最高达90%,而且高含CO2气田数量少、起步晚,因此可供借鉴的资料并不丰富,需要根据高含CO2气田的特点对几种水合物抑制剂进行分析比较研究。本文主要在水合物生成条件的基础上做实验,针对甲醇和乙二醇做抑制剂,选取不同体积分率的抑制剂浓度来完成水合物生成条件的实验,完成抑制剂效果评价曲线,从而选择出效果更好、更经济实用的水合物抑制剂。  相似文献   

15.
Dual function inhibitors for methane hydrate   总被引:2,自引:0,他引:2  
The performance of five imidazolium-based ionic liquids as a new class of gas hydrate inhibitors has been investigated. Their effects on the equilibrium hydrate dissociation curve in a pressure range of 30-110 bar and the induction time of hydrate formation at 114 bar and a high degree of supercooling, i.e., about 25 °C, are measured in a high-pressure micro differential scanning calorimeter. It is found that these ionic liquids, due to their strong electrostatic charges and hydrogen bond with water, could shift the equilibrium hydrate dissociation/stability curve to a lower temperature and, at the same time, retard the hydrate formation by slowing down the hydrate nucleation rate, thus are able to act as both thermodynamic and kinetic inhibitors. This dual function is expected to make this type of inhibitors perform more effectively than the existing inhibitors.  相似文献   

16.
单纯降压法开采天然气水合物容易遇到地层传热速率慢的问题导致体系温度压力长期处于相平衡状态,因而严重拉长了开采时间。为解决降压法开采过程中低温区域水合物分解过慢的问题,本文利用三维装置研究了注化学剂法开采过程中水合物分解和产气规律。根据反应釜内温度和压力的变化,全面分析了注入过程、焖井过程对水合物分解的影响。结果表明,对于单井吞吐法,在注入抑制剂阶段可以刺激水合物快速分解,但不宜采用过大的注入量和过多的注入次数,过大的注入量和注入次数会增大堵塞风险导致开采时间被大大延长。相较于小型实验装置,中试级别实验由于注入时间长,抑制剂在注入阶段已经得到较为充分的运移,因而焖井时间不能过长,控制在40min左右为宜。  相似文献   

17.
The performance of polyvinylpyrrolidone (PVP) and polyvinylcaprolactam (PVCap) as kinetic hydrate inhibitors (KHIs) in the presence of NaCl and n‐heptane was evaluated by using a high‐pressure cell in conjunction with a rotational rheometer. The addition of KHIs was found to prolong the induction time and decrease the hydrate growth. On the other hand, hydrates agglomerated more readily. PVP performed more efficiently than PVCap in delaying nucleation time but PVCap controlled the growth and delayed agglomeration more effectively. Addition of n‐heptane to the system increased induction time and reduced growth. Unexpectedly, addition of KHIs in the presence of n‐heptane decreased nucleation time but controlled growth effectively. Meanwhile, hydrate particles remained dispersed more efficiently and no agglomeration was detected. These observations confirm that high‐pressure rheology is an additional laboratory assessment tool to evaluate KHIs under ocean field conditions. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2654–2659, 2014  相似文献   

18.
唐翠萍  张雅楠  梁德青  李祥 《化工学报》2022,73(5):2130-2139
注入动力学抑制剂是一种有效缓解天然气水合物管道堵塞的方法。本文以动力学抑制剂聚乙烯基己内酰胺(PVCap)结构为基础,将氧乙基和酯基引入PVCap的分子链端,合成了新抑制剂PVCap-XA1,在高压定容反应釜内评价了PVCap-XA1对甲烷水合物形成的抑制作用,并采用粉末X射线衍射、低温激光拉曼光谱和冷冻扫描电子显微镜研究了抑制剂对甲烷水合物结构和形态的影响。实验结果表明,相同实验条件下PVCap-XA1比PVCap具有更好的抑制作用;微观测试表明PVCap-XA1的加入没有改变甲烷水合物的晶体结构,但会使甲烷水合物晶面扭曲变形,可以降低水合物大小笼占有比(IL/IS),使得甲烷分子更难进入水合物大笼,同时PVCap-XA1的加入使甲烷水合物的微观形貌由多孔有序变得更致密而不利于气体通过。  相似文献   

19.
Kinetic hydrate inhibitors (KHIs) are used to prevent gas hydrate formation in gas and oilfield operations. All KHIs discovered to date are water-soluble polymers. However, their performance can be enhanced by certain non-polymeric organic molecules. Recently, it was claimed that certain imidazolium-based ionic liquids could have a dual function, acting as both thermodynamic inhibitors and KHIs (Xiao, C., Adidharma, H., 2009. Chem. Eng. Sci. 64, 1522). As the KHI experimental work was carried out at a temperature of –12 °C, giving a very high subcooling of about 25 °C, we reinvestigated two of these ionic liquids at more typical subsea temperatures and subcoolings. We find that these ionic liquids are very poor KHIs when used alone at 5000–10000 ppm, but they are fairly good synergists for commercial KHIs based on vinyl lactam polymers and hyperbranched poly(ester amide)s. Both ionic liquids showed only weak growth inhibition of tetrahydrofuran hydrate crystals. Finally, both ionic liquids were poorly biodegraded in the OECD306 seawater 28 day biodegradation test.  相似文献   

20.
Gas hydrates have drawn global attentions in the past decades as potential energy resources. It should be noted that there are a variety of possible applications of hydrate-based technologies, including natural gas storage, gas transportation, separation of gas mixture, and seawater desalination. These applications have been critically challenged by insufficient understanding of hydrate formation kinetics. In this work, the literatures on growth kinetic behaviors of hydrate formation from water-hydrocarbon were systematically reviewed. The hydrate crystal growth, hydrate film growth and macroscopic hydrate formation in water system were reviewed, respectively. Firstly, the hydrate crystal growth was analyzed with respect to different positions, such as gas/liquid interface, liquid–liquid interface and gas–liquid–liquid system. Secondly, experimental and modeling studies on the growth of hydrate film at the interfaces between guest phase and water phase were categorized into two groups of lateral growth and thickening growth considering the differences in growth rates. Thirdly, we summarized the promoters and inhibitors reported (biological or chemical, liquid or solid and hydrophobic or hydrophilic) and analyzed the mechanisms affecting hydrate formation in bulk water system. Knowledge gaps and suggestions for further studies on hydrate formation kinetic behaviors are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号