首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正> 五、试验结果和分析讨论——低温回火态1.复合组织的常规力学性能和断裂韧性亚温淬火所得铁素体和马氏体两相复合组织经200℃2小时低温回火后得到铁素体和回火马氏体组织,仍保留亚温淬火后的组织形态。表4为低温回火状态下30CrMnSiA钢含不同铁素体量的各种复合组织的常规力学  相似文献   

2.
<正> 低合金钢淬火成马氏体后,在一定温度范围回火时,往往出现冲击韧性下降或断口特征韧-脆转折温度上升,这种现象,称为回火脆。回火脆一般又可分为两类:第一类回火脆是指淬火马氏体在约250~450℃间回火时产生的。这时钢的组织为回火马氏体,所以又常称为回火马氏体脆性。第二类回火脆是当钢经过600℃以上回火,其马氏体组  相似文献   

3.
60Si2Mn钢的冲击磨料磨损试验   总被引:1,自引:0,他引:1  
本文对60Si2Mn钢的冲击磨料磨损特性进行了试验研究,结果指出,在≤1.0J冲击功下,60Si2Mn钢的亚温淬火组织和等温淬火组织耐磨性较好,为低合金高碳钢代替高锰钢制作磨损零件提供了依据。  相似文献   

4.
研究60Si2CrVA弹簧钢经淬火-等温-淬火-回火(Q-I-Q-T)热处理后复相组织含量与断裂韧性间的关系。结果表明,在实验的等温温度范围内,随着等温温度的升高,残余奥氏体和贝氏体含量逐渐增大,60Si2CrVA钢强度降低,断裂韧性逐渐增加,在300℃等温时,断裂韧性达到最大值66.37 MPa.m1/2。稳定的残留奥氏体与过渡形态贝氏体量增加是提高断裂韧性的主要原因。  相似文献   

5.
本文研究了40CrNi2Si2MoVA超高强度钢在油淬和270℃等温淬火两种热处理状态下,显微组织对冲击疲劳裂纹扩展速率(稳态扩展区)的影响。结果表明,在应力强度因子△K较小时,等温淬火组织中da/dN较低,而在△K较大时,油淬组织中da/dN较低;这与在裂纹扩展不同阶段残余奥氏体(A_R)对da/dN的作用不同有关。  相似文献   

6.
27SiMnA钢进行亚温等温淬火得到铁素体+马氏体+贝氏体(占50%)复相组织,这种组织具有理想的强韧性配合。亚温等温复相组织中的贝氏体类似低温上贝氏体(B_Ⅱ)。马氏体晶体外貌除了有条状外,还有枣核状。被强化的未溶铁素体呈不连续块状分布。马氏体和贝氏体铁素体晶体细小、马氏体和贝氏体铁素体中碳化物弥散分布以及少量薄膜状形式分布的残余奥氏体是亚温等温淬火复相组织(B+M+F)强韧化的主要原因。  相似文献   

7.
一、前言 亚温淬火是应用马氏体十铁素体复合组织的一种强韧化工艺。目前在亚温淬火工艺发展完善的同时,又逐渐派生出其它亚温处理工艺。亚温等温淬火以强韧性较好的下贝氏体(或下贝氏体+马氏体)为基体组织,且具有残存铁素体及晶粒细化等有益因素,将有可能获得更加优异的强韧化效果。本试验对40Cr钢进行亚温等温淬火处理,分析组织和性能变化,以便了解亚温等温淬火的相变规律和强韧化效果,探讨该工艺的强韧化机理及其实用性。  相似文献   

8.
采用刚玉砂轮在普通平面磨床上对35CrMo钢进行磨削硬化,研究其硬化层组织及变化规律。结果表明:磨削淬火工艺可获得700HV以上的高硬度淬硬层,最大淬硬层深达1.8 mm;磨削淬火加热速度极快,细化了奥氏体晶粒,淬火马氏体组织非常细小,得到板条马氏体和片状马氏体的整合组织。  相似文献   

9.
研究了 38Si2 Mn2 Mo钢等温下贝氏体中和淬火回火后马氏体中析出的碳化物。在下贝氏体中存在两组 ε碳化物 ,它们与贝氏体铁素体保持 Jack位向关系 ,而与奥氏体无固定取向关系 ,ε 碳化物的惯习面为 { 10 0 } b,未见碳化物在奥氏体一侧析出。表明下贝氏体具有碳过饱和度 ,ε 碳化物是从贝氏体铁素体中析出的 ,具有与回火马氏体相似的切变特征。  相似文献   

10.
研究了45CrMnSiMoRE钢不同组织状态的机械性能以及在不同磨料磨损条件下的耐磨性。结果表明,在两体静载磨损条件下,钢的耐磨性主要取决于钢的硬度,淬火马氏体及150℃回火马氏体由于硬度较高均具有良好的耐磨性。在三体冲击磨损条件下,钢的耐磨性取决于硬度与韧性的匹配情况,冲击磨损耐磨性最佳的组织是300℃回火后的回火马氏体及回火马氏体+25%下贝氏体,这两种组织状态均具有较好的强韧性。通过对磨面形貌的显微分析,探讨了两种磨损条件下的磨损机制,从微观角度阐明了钢的耐磨性与其它机械性能的内在联系。  相似文献   

11.
研究了38CrSi钢等温淬火组织的强韧性和耐磨性。指出,以变异上贝氏体为主的贝氏体和马氏体的混合组织具有最高的强韧性和耐磨性。  相似文献   

12.
<正> 前言 众所周知,马氏体是碳在α铁中的过饱和固溶体。通常对钢进行淬火是为了得到马氏体组织。中、高碳钢淬火后,得到中、高碳马氏体,低碳钢通过强烈淬火后得到的组织称为低碳马氏体。  相似文献   

13.
本文采用低溫加热短时保温,而后等温淬火的方法,对冷作模具用CrWMn钢的热处理工艺进行了研究。当该钢获得低碳板条马氏体和细小片状马氏体混合组织时,模具的硬度基本不降低,但脆性降低,韧性提高,可大幅度提高模具使用寿命。  相似文献   

14.
杨东青  张建  范霁康  周赵  王克鸿 《兵工学报》2022,43(8):1990-1997
高氮奥氏体不锈钢与603马氏体高强钢因优越的力学性能在装甲防护领域具有广阔的应用前景。根据“低强匹配”原则,采用ER307Mo奥氏体不锈钢焊丝对30 mm厚的高氮奥氏体不锈钢和603马氏体高强钢脉冲熔化极惰性气体保护焊对接焊接,并分析焊接接头微观组织及力学性能。研究结果表明:试验得到了表面成形良好、内部无裂纹、未熔合等缺陷的焊接接头;焊缝组织主要为奥氏体以及被奥氏体基体包围的铁素体树枝晶,高氮奥氏体不锈钢熔合线附近组织主要为奥氏体,603钢熔合线附近组织主要为条片状马氏体、贝氏体以及回火马氏体;接头的断裂形式以韧性断裂为主,存在少量的解理断裂特征,能谱仪点扫描结果表明,韧窝中心的第2相粒子为富Fe的碳化物;焊接接头的平均抗拉强度达722 MPa,平均断后延伸率达20.2%;焊缝金属的动态屈服强度为913 MPa,最大工程应力为2 045 MPa,抗冲击性能优于603钢母材。  相似文献   

15.
<正> 一、前 言 为了维持高的硬度和强度并兼有足够的韧性,高碳工具钢和合金工具钢通常进行低温范围的等温淬火,使在钢的基体组织中形成一定数量的下贝氏体组织。用金相显微镜很难区别下贝氏体组织和经低温回火后的马氏体组织,尤其是在这两种组织都十分细小的情况下。用透射电子显微镜观察上述两种组织时,能清楚地分清它们各自的特征。为  相似文献   

16.
本文报导了三种具有不同显微组织状态的电渣重熔钢的断裂韧性和疲劳裂纹扩展数据。在这三种组织状态中,两种是经过淬火加回火但各自晶粒度不同的全马氏体组织,第三种为原始马氏体材料在重新加热后经不完全淬火和回火处理的组织。经不完全淬火的组织是由马氏体基体中含35%左右的下贝氏体所组成,所有三种显微组织状态均经回火,以获得相同的抗拉强度。 不完全淬火钢的断裂韧性(K_(1c))高于粗晶粒的全马氏体材料。但是,经进一步试验证实,不全完淬火材料的断裂韧性之所以高,原因仅在于奥氏体晶粒的细化。所有三种显微组织状态下的疲劳裂纹扩展性能都很相似。扫描电镜显微检验表明,裂纹扩展的第二区表现出“常规”的条纹状,因此其结果可采用形式为da/dN=c△K~m的Paris-Erdogom定律表达。基于本研究工作的结果,提出如下观点:下贝氏体组织降低了经淬火、回火处理的0.36C Ni—Cr-Mo钢的断裂韧性。裂纹扩展速率高于10~(-5)毫米/次时,则不受微观组织状态或晶粒度的影响。  相似文献   

17.
GCr15钢等温马氏体转变及残余奥氏体研究   总被引:3,自引:1,他引:2  
本文研究了GCr15钢奥氏体化后淬入稍低于M_S点热油中等温,马氏体及残余奥氏体的变化。其中,马氏体多阶段形成,细化了马氏体领域,残余奥氏作量大且分布均匀;利用奥氏体热稳定化和等温马氏体形成,可得到不同的残余奥氏体量。采用显微硬度和TEM等研究了等温马氏体对回火组织的影响。指出等温马氏体形成推迟了先转变马氏体的分解,但不能阻止残余奥氏作内碳化物析出,且等温马氏体具延长残余奥氏体分解孕育期的作用。  相似文献   

18.
本文研究了热处理强化后的40CrNiMoA钢在低于屈服强度的应力作用下常温蠕变行为和影响因素。揭示了热处理工艺及显微组织对钢材蠕变抗力的影响。结果表明:热处理强化钢中有微量游离铁素体存在,将明显降低蠕变抗力。钢材经1100℃高湿奥氏体化淬火和M_s点以下的等温淬火并经32O℃回火,将使蠕变抗力显著提高。  相似文献   

19.
本文研究了4Cr5MoVlSi钢经连续CO_2激光束辐照后的显微组织特征、显微硬度变化和热稳定性。结果表明,该钢经激光辐照后形成三层不同的组织:熔凝层、淬火层和基体。熔凝层为精细的树枝晶,成分均匀,消除了夹杂物,其组织为马氏体;淬火层为细小的隐针马氏体和碳化物组成。熔凝组织具有高的硬度和较好的热稳定性。  相似文献   

20.
提高淬火低碳钢强度、韧性的途径   总被引:1,自引:0,他引:1  
<正> 一、前言 板条状马氏体是淬火钢中的重要组织形态。低碳钢淬火获得板条状马氏体组织,可以得到高强度、高韧性和高的耐磨性能。因此,近二十年来,国内外对板条状马氏体的组织形态、机械性能和回火转变进行过大量研究与此同时淬火低碳钢件也在许多机器和结构上得以应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号