首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
筒桩土芯性状复杂,土芯对单桩竖向承载力作用机理尚不明确,当前筒桩承载力计算还不成熟。通过试验手段,从土芯高度及土芯力学性状两方面来分析土芯对单桩竖向承载性状的影响,对新型薄壁灌注筒桩竖向承载性状进行了研究。根据土芯顶端分担荷载与否把筒桩结构分为两类,并分别对筒桩内侧摩阻力产生机理进行分析,核心是土芯与筒桩存在相对位移趋势以及相对位移的发生是筒桩内侧摩阻力产生的原因,假设内侧摩阻力随深度减小呈指数函数形式衰减;在此基础上得出了筒桩内侧摩阻力以及土芯顶端分担荷载的计算方法。试验研究与理论研究结果表明,土芯的存在对提高单桩承载力及减少沉降有较大贡献。根据试验及对土芯性状进行分析,建立了筒桩竖向承载力计算公式,工程实践证明了其实用性。  相似文献   

2.
现场载荷试验是确定单桩竖向承载力常用方法之一,基于现场试桩静载试验和桩身轴力测试试验,分析了后注浆超长灌注桩的竖向极限承载力性状、桩身轴力传递特性及桩侧阻力,桩端阻力发挥特性。研究结果表明:在竖向荷载作用下,桩身轴力随着深度的增加而增量减小,且随荷载的增加而逐渐增大;超长灌注桩表现出摩擦桩特性,荷载-沉降曲线没有明显破坏点,其竖向荷载主要靠侧摩阻力进行传递;桩侧阻力和桩端阻力非同步发挥并且相互影响。根据实测数据对计算单桩承载力的侧摩阻力和桩端阻力的系数进行修正,修正后为类似桩基础工程设计提供技术参考。  相似文献   

3.
大直径现浇混凝土薄壁简桩是一种新的地基处理方法,具有施工迅速、质量好、无污染、经济效益好等优点,已成功应用于高速公路、铁路、水利堤坝、基坑支护工程及民用建筑地基处理中。本文对现浇大直径简桩竖向受力性状进行了较为全面的分析,其竖向承载力由桩端阻力、桩外侧阻力、土芯摩阻力三部分组成,而且三者异步发挥。并用杭宁高速公路二期(长兴段)白溪港桥南端桥头段筒桩为实例,分析计算三种国内筒桩计算方法,比较得出了简桩现行较好的计算方法—浙江省工程建设标准《大直径现浇混凝土薄壁简桩技术规程》计算方法,为今后该方法的推广奠定了基础。  相似文献   

4.
《门窗》2019,(15)
桩基础是软土地基处理中比较常见的一种软土地基处理方式,主要分为群桩基础,或是由柱与桩直接连接的单桩基础。在具体的工程中,桩基础承担着上部结构,承担上部结构的竖向荷载,进而把荷载传递至地基中,根据受力性状不同,桩基分为摩擦桩和端承桩。桩的承载力一般情况下由两部分构成,即桩身、桩周土层的摩擦阻力、桩端阻力。根据相应的特征分析可知,桩侧摩阻力是桩顶荷载与桩端阻力的差值。竖向荷载首先由桩侧摩阻力抵抗,大于桩侧阻力的部分由桩端阻力抵消平衡,本文首先分析了负摩阻力的产生,接着对减小负摩阻力的优化措施进行相应的阐述,希望给相关人士带来一定的借鉴意义。  相似文献   

5.
基于ICP方法,提出考虑土芯贡献的大直径薄壁筒桩竖向承载力计算新方法,即不考虑桩内侧摩阻力;桩端阻力按闭口桩端阻的1/2计算,单位桩端反力取桩端上下2倍桩径范围内土体CPT锥尖阻力的平均值;破坏面内摩擦角取直剪试验峰值内摩擦角的1.2倍;用简化公式计算打桩后土体的径向有效应力。该方法综合考虑我国浙江地区软土的特点,比ICP方法简单、实用、参数更易确定,通过工程实例验证,并与计算桩侧摩阻力的α法、R1,R2,R3法及V&F法比较,结果表明,新方法的计算结果最接近实测值。  相似文献   

6.
桩基础属于深基础,是由设置于岩土中的桩和与桩顶连接的承台共同组成的基础或由柱与桩直接连接的单桩基础。工程中桩基础主要用来支撑上部结构,承担上部结构的竖向荷载,并最终将荷载传递至地基中。桩的承载力由桩身与桩周土层的摩擦阻力、桩端阻力两部分构成。按照受力特征分析,桩侧摩阻力是桩顶荷载与桩端阻力的差值。竖向荷载首先由桩侧摩阻力抵抗,大于桩侧阻力的部分由桩端阻力抵消平衡。按照《建筑桩基技术规范》JGJ 94-2008(以下简称"《桩基规范》")基桩按承载性状分类为摩擦型桩和端承型桩。与正常条件下不同,在某些特殊条件下,桩基可能出现负摩阻力。文章从桩-土相对位移出发,分析了桩基负摩阻力产的机理,结合《桩基规范》探讨了负摩阻力计算和带负摩阻力桩基设计与检测标准,并提出了解决办法,最后总结了减少桩基负摩阻力的工程优化措施。  相似文献   

7.
结合郑州东区某工程,分析了静压桩单桩竖向极限承载力按规范建议的静力触探法计算值和试桩实测值产生差异的原因,指出了不同地区的地质特征差异性和静力触探法在计算单桩极限承载力的局限性,提出了用线性回归分析的方法确定桩端阻力和桩侧阻力的修正系数来计算静压桩单桩竖向极限承载力.  相似文献   

8.
本文通过工程实例,对考虑负摩阻力的基桩进行了单桩竖向承载力的计算和分析对比,理论分析表明在有负摩阻力产生的场地,桩的实际受力和静载试验时的受力与变形性状存在较大的差异。根据静载试验时桩土受力和变形特点,指出对于端承型桩单桩竖向极限承载力设计值不应直接取自静载试验的竖向极限承载力,应将试验结果扣除由负摩阻力引起的下拉力后用于工程桩的设计,否则桩的承载力将存在不安全的因素,通过工程桩的检测和竣工后的沉降监测说明取值合理。  相似文献   

9.
桩基静载试验中,忽略桩身残余应力,虽然不会影响桩基极限承载力的大小,但会影响桩侧摩阻力和端阻力的真实值。分析了残余应力产生的原因、机理和效果,分析和总结了残余应力的现场测试方法,并通过现场试桩实例分析了忽略桩身残余荷载对桩侧摩阻力和桩端阻力的影响。结果表明,忽略残余荷载的存在,竖向抗压桩静载试验结果会高估中性点以上桩段侧摩阻力和低估中性点以下桩段侧摩阻力和桩端阻力,会高估桩的竖向刚度。为了很好地了解和洞察桩基的荷载传递机理,在桩基静载试验中,建议在试桩前后系统地采集桩身测试元件读数,不能在试桩前人为地将测试元件读数设置为零。  相似文献   

10.
大直径灌注筒桩轴向荷载-沉降曲线的一种解析算法   总被引:1,自引:0,他引:1       下载免费PDF全文
大直径现浇混凝土薄壁筒桩为主要应用于软弱地基处理的一种桩型。筒桩的荷载传递机理不同于一般的灌注或沉管实心桩,筒桩的荷载传递机理的复杂性制约了筒桩承载理论的发展与工程应用,其工程设计方法至今仍处于半理论半经验的状态。本文采用按桩顶沉降量控制基桩竖向承载力的计算方法,考虑土体强度沿深度线性变化的特性,并考虑大直径灌注筒桩土芯分担荷载以及筒桩与土芯内摩阻力发挥情况,采用一种桩内侧摩阻力、桩外侧摩阻力和桩端阻力共同传递荷载的模型,推导出一种沉管灌注筒桩的轴向荷载-沉降曲线的解析算式,并计算得到任意截面桩身轴力及内外侧摩阻力表达方程式。通过两个工程算例,验证本文公式的实用性。计算结果表明,土芯分担顶部荷载并提供内侧摩阻力,对提高承载力和减小沉降量都有贡献。  相似文献   

11.
端承桩复合桩基及其设计方法   总被引:1,自引:0,他引:1  
对于采用端承桩(或摩擦端承桩)的桩基础,由于基桩沉降很小,即使加大桩距也很难发挥桩间土的承载作用,因此上部结构荷载几乎全部由桩来承担,桩间土即便有很大的承载力也无法参与工作,从而造成很大的浪费。通过采用专门研制的桩顶变形调节装置,来协调端承桩与桩间土之间的变形,从而实现端承桩与桩间土的共同作用;并对使用端承桩同时考虑地基土承载力,特别是以地基土承载为主,辅以少量端承桩的端承桩复合桩基,提出设计方法。该方法经工程实践验证是合理的,具有良好的应用前景。  相似文献   

12.
刘运庚 《山西建筑》2012,(32):59-60
根据6个PHC超长管桩的抗压静载试验,分析了PHC管桩的抗承载性能,采用高应变检测方法,得到了不同土层的侧摩阻力及桩端阻力值,研究结果表明:单桩抗压承载力因持力层的不同而不同;随着桩长的增加,单桩极限承载力、桩端阻力及其所占总阻力的比例相应增加;根据管桩复打和初打检测结果的比较,得到承载力恢复系数(桩周土阻力恢复系数)平均值为1.13。  相似文献   

13.
 单桩静载试验和基础沉降实测资料表明:在设计工作荷载下超长单桩的桩顶沉降主要来自桩身压缩,且在最大加载条件下超长桩表现为端承摩擦桩性状。超长单桩侧摩阻力由上部土层到下部土层依次发挥,砂质粉土侧摩阻力充分发挥所需的桩土极限相对位移为14~18 mm,粉质黏土侧摩阻力充分发挥所需的桩土极限位移为17~19 mm,当桩土相对位移大于该极限位移后,桩侧土层会出现侧摩阻力软化现象。群桩基础的沉降随施工荷载水平的增加而增大。荷载较小(第5层以下)时,大楼沉降较小且沉降均匀;当荷载达到一定值(第30层以上)时,核心筒处沉降大于大楼周边沉降。大楼竣工时核心筒与周边沉降差较小,大楼整体变形协调。群桩效应沉降比随着荷载水平(施工层数)的增大先增大后减小。  相似文献   

14.
 采用球形孔和圆柱孔扩张(收缩)理论研究桩基与隧道的相互作用。首先,基于Mohr-Coulomb屈服准则,采用圆柱形孔收缩模型模拟隧道开挖过程,得到Pasternak地基上隧道开挖引起的邻近单桩弹塑性水平位移。其次,提出隧道开挖对邻近桩基承载能力弹塑性影响的计算方法。桩基总承载能力由桩端极限承载能力和桩身极限侧阻摩擦力两部分组成。其中,采用无限介质中球形孔扩张模型计算桩端小孔极限压力,并得到桩端极限承载能力;采用修正的?法计算临界状态下桩身等效平均剪应力分布,进而得到桩身极限侧阻摩擦力,该方法考虑隧道开挖对桩身剪应力的削减作用。在此基础上,计算隧道开挖过程对周围土体弹塑性应力的影响;分析隧道和桩基相对位置对桩基承载能力的影响;定义桩基总承载力降低到85%时桩基发生破坏,研究桩端与隧道中心相对间距与桩基破坏时隧道体积损失临界值的关系,并考察土体黏聚力、内摩擦角、密实度、土体模量以及桩径等参数的影响。结果表明,柱孔收缩弹塑性模型可以较好地模拟隧道开挖对邻近桩基弹塑性水平位移的影响;隧道开挖后在一定范围内形成一个塑性区,在该区域内土体有效应力影响因子Rp值小于1,表明对桩基承载能力有削减作用,当桩身全部处于塑性区以外时,其承载能力不受隧道开挖的影响;隧道和桩基相对位置对桩基承载能力有较大影响,当桩端与隧道中心的间距一定时,随着隧道埋深的增加,桩端极限承载力影响因子Rqb逐渐趋于1,说明增加隧道埋深对桩基承载力更加有利;桩基破坏时隧道体积损失临界值与桩端–隧道中心间距平方呈线性关系,桩基承载能力对土体模量比较敏感。  相似文献   

15.
摩擦支承桩的稳定性研究   总被引:3,自引:0,他引:3  
以m法为基础,用梁函数逼近桩变形曲线,较精确地分析了考虑桩侧摩阻力的桩的稳定性。分析表明,土的抗力增加,桩的刚度减小,桩失稳半波数增加,一般n<10。桩侧摩阻力,特别是负摩阻力对桩的稳定有实质性的影响。  相似文献   

16.
软土地区大吨位超长试桩试验设计与分析   总被引:1,自引:0,他引:1  
温州350 m超高层中超长桩加载2800 t的试桩静载试验设计与分析表明:在地表土质承载力较低场地进行大吨位堆载试验时,可选择桩梁式堆载支墩–反力架装置来完成试验。对超长桩来说,在最大加载条件下,实测桩端阻力仅为桩顶荷载的25%左右,超长桩表现为端承摩擦桩性状。在使用荷载下,桩顶沉降的90%以上来自桩身压缩,在进行超长桩设计时,要充分考虑桩身质量对试桩沉降的影响。同时,桩底沉渣清除的干净与否,也直接影响超长桩的沉降。超长桩桩侧上部土层摩阻力具有不同程度的软化现象,而中下部土层侧摩阻力具有较弱的强化效应,因此在超长桩承载力计算时,不同深度土层的桩侧阻力和桩端阻力都应乘以相应不同的修正系数。试验结果显示淤泥土、淤泥质黏土、淤泥夹粉砂土中极限侧阻充分发挥所需的桩土相对位移阀值分别约为5~7 mm、6~8 mm和8~10 mm。  相似文献   

17.
摩擦端承桩复合桩基设计研究   总被引:1,自引:0,他引:1  
提出一种摩擦端承桩复合桩基设计方法 ,即在剪力墙或柱下集中布桩 ,桩顶与筏板 (或承台 )间设置一定厚度的软垫或专用变形器。通过迫使桩间土先于桩顶发生沉降使其承担预定的荷载 ,随后增加的荷载则由桩、土共同承担。该法可充分发挥地基土的承载力 ,大幅度减少用桩量和筏板厚度及配筋 ,其经济效益明显优于常规桩基和复合地基。对其承载机理和变形特性进行了初步研究 ,得出了承载力和沉降近似计算公式 ,并成功应用于工程实践 ,取得了很好的经济效益  相似文献   

18.
为研究复合桩基础桩-土-承台承栽力各自占桩基础总承载力的比值,采用有限元方法,以接触模型模拟混凝土/地基接触面,分端承型和摩擦型桩两种类型,对承台底地基土强度和外荷载大小对桩基础承载力分配的影响进行了分析研究.结果表明:端承型和摩擦型桩的承栽力分配存在较大不同;端承型桩的端阻力随着承台底土强度的增大而增大,侧阻力基本不...  相似文献   

19.
根据上海地区某工程超长灌注桩的现场静载荷试验和桩身应力测试结果,分析该地区超长灌注桩的竖向承载特性。实测结果表明,两根试桩的桩端阻力与桩顶荷载之比约为10%,超长桩的竖向承载力主要由桩侧摩阻力来提供的。通过对桩身轴力和侧阻分布曲线的分析,发现超长灌注桩侧摩阻力的发挥与桩顶荷载、桩周土性质等因素密切相关,而成孔质量在满足规范要求后对土体侧摩阻力发挥影响并不显著。根据桩身侧阻分布特点,建议在工程设计时应充分利用深层的密实粉砂层来提高桩身竖向承载力,研究结论可供同类地区的超长桩设计和理论分析提供参考。  相似文献   

20.
桩端岩土差异对超长桩影响的对比研究   总被引:14,自引:3,他引:14  
分析了3种类型桩端岩土有差异的8根超长灌注桩的对比试验资料,包括进入基岩和不入基岩的对比试验桩各1根,桩端有沉渣和无沉渣的对比试验桩各1根,桩端沉渣厚度不同的对比试验桩各1根,桩端有无高压注浆的对比试验桩各1根。分析结果表明,桩端岩土由软层转向硬层时,超长桩的荷载.沉降曲线会由陡直转向平缓,极限状态时的破坏由趋于刺入破坏转向趋于整体剪切破坏,桩型由纯摩擦桩转向端承摩擦桩,说明桩端岩土特性对超长桩的承载性状有大的影响;桩端岩土由软层转向硬层时,桩极限承载力的提高主要体现在极限端阻力的提高,极限端阻力的提高可用含端阻力增强系数的公式来表示:桩端高压注浆超长桩还可看成是超长扩底桩,它的极限端阻力除可用端阻力增强系数表达外,也可暂用一般扩底桩极限端阻力的形式来表达:入硬层超长桩(如长径比为82时)还可是端承摩擦桩,它具有很大的承载潜力,一般认为其端阻力小是因为取的桩顶沉降值过于保守造成的。对入硬层超长桩取较大桩顶沉降值时的桩承载力是可行的,此时只要把相邻桩基础的沉降差控制在一定的范围内,使之不产生过大的不均匀沉降即可。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号