首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
采用金相显微镜、扫描电镜、能谱分析、室温冲击等方法,研究了800℃固溶处理5~120min后2205双相不锈钢σ相析出以及对冲击性能的影响规律.结果表明:固溶处理10 min时开始有σ相析出,随固溶时间的延长,σ相析出增多,析出尺寸增大,析出速度呈先增后减的趋势;σ相析出伴随着大量的二次奥氏体沿σ相两侧向铁素体晶内生长,造成铁素体含量减少,奥氏体含量增加;2205双相不锈钢的冲击性能对σ相析出非常敏感,σ相在α/γ相界上析出,造成晶界脆化,少量σ相析出就导致冲击韧度大幅下降,并随σ相析出量的增加持续降低,在双相不锈钢热加工过程中应尽量缩短在σ相析出温度范围内的停留时间,避免σ相析出造成不利影响.  相似文献   

2.
通过光学显微镜、扫描电镜对2205双相不锈钢1050、1350 ℃固溶30 min+650~1000 ℃时效0.5~1440 min后σ相形貌和含量进行观测。结果表明:经过1050 ℃固溶处理后,2205双相不锈钢在650~850 ℃时效处理过程中存在σ相析出行为。当时效温度为850 ℃时,σ相析出最快;随着时效温度偏离850 ℃,σ相析出速度降低。经过1350 ℃固溶后,σ相析出温度整体提高,析出温度范围更宽。σ相析出后即发生迅速长大,在3 h内体积分数可达0.25%~1.75%;之后其生长速率逐渐减缓。σ相首先在铁素体与奥氏体相界处以小于1 μm的近似球状颗粒形貌析出,之后沿着铁素体相中宽度在几微米的狭窄区域向铁素体内生长。2205双相不锈钢的时效处理温度影响σ相的析出行为,时效处理应在偏离850 ℃的温度下进行,以防止σ相的析出和快速长大。  相似文献   

3.
固溶温度对2205双相不锈钢焊缝组织与韧性的影响   总被引:1,自引:0,他引:1  
对采用等离子弧焊(PAW)打底+熔化极氩弧焊(MIG)盖面的2205双相不锈钢平板焊接接头分别进行不同温度的固溶处理,并对热处理后的焊缝部位进行奥氏体和铁素体的两相比例检测,以及显微组织分析及低温冲击韧性检测.结果表明:随固溶温度上升,焊缝铁素体含量逐渐增多;低温冲击韧性值单调升高.当固溶温度低于1000℃时,因σ相的析出,导致焊缝冲击韧性急剧下降.  相似文献   

4.
分析了时效温度、时效时间、固溶温度、铬和钼含量对2205双相不锈钢中σ相析出量的影响规律。结果表明:随着时效时间延长,σ相析出量依次增加。在相同的时效时间下,随着时效温度升高σ相含量依次增大,在850 ℃时达到最大值;温度超过850 ℃后,随着时效温度升高σ相含量依次减小。时效时间相同的情况下,随着固溶温度、铬含量和钼含量升高,σ相析出时间变短、析出量增加。  相似文献   

5.
借助扫描电镜(SEM)、透射电镜(TEM)、X射线能谱仪(EDS)和冲击试验机等研究了固溶温度对9 mm厚的S31254超级奥氏体不锈钢钢板中心位置处显微组织及冲击韧性的影响.结果 表明,固溶温度较低时(950~1100℃),钢板的中心位置析出大量的X相和σ相,析出相呈带状分布.随着固溶温度的升高,析出相数量呈先增加后减少的趋势.固溶温度在1000℃时,由于析出相的数量最多导致实验钢的冲击吸收能量最低;固溶温度超过1150℃,可以有效避免析出相的析出和带状组织的形成,实验钢的冲击韧性明显升高.  相似文献   

6.
采用金相显微观察、定量相分析、能谱分析等方法,研究了室温压缩变形对2205双相不锈钢在700~950℃固溶处理后σ相析出行为的影响,用于指导双相不锈钢的冷、热加工工艺。结果表明,压缩变形并没有扩大双相不锈钢固溶处理的σ相析出温度范围,但加快了σ相的析出速度,导致σ相析出量增多,析出部位由α/γ相界扩大至铁素体晶内和奥氏体晶内,同时导致σ相析出鼻尖温度由850℃降至800℃。  相似文献   

7.
利用电化学方法对不同固溶处理的2205双相不锈钢在卤水中的临界点蚀温度及临界点蚀电位进行了研究,结合显微金相技术研究了固溶处理温度对相含量及耐蚀性能的影响。结果表明:2205双相不锈钢在卤水中的临界点蚀温度介于55~60℃之间,临界点蚀电位随着环境温度的升高而降低;金属碳化物在固溶处理温度750~900℃范围内析出,奥氏体含量急剧减少材料耐蚀性能严重恶化;固溶处理温度1100℃保温1 h的试样耐蚀性能最佳。  相似文献   

8.
研究了固溶处理工艺对双相不锈钢组织及力学性能的影响。对经不同温度固溶处理后的试样进行了性能检测,并借助OM、SEM及电化学等分析手段对2205的显微组组织、析出物及耐腐蚀性能等进行了观察和分析,结果表明:低温固溶时,双相不锈钢中易产生大量的脆性析出相(σ相)是导致其塑性恶化及耐蚀性降低的原因;提高固溶温度可减少σ相的析出,有利于双相不锈钢的塑性和耐蚀性的改善;此外,双相不锈钢中铁素体含量随固溶温度升高而增大,但其所占比例受冷速影响较小。  相似文献   

9.
超级双相不锈钢σ相析出及对组织性能的影响   总被引:2,自引:1,他引:1  
利用光学显微镜、扫描电子显微镜(SEM)、X射线衍射(XRD)、纳米力学探针、常温拉伸等方法,研究了S32750超级双相不锈钢中σ相的析出规律及其对组织性能的影响.结果表明,σ相优先析出于奥氏体晶粒边界处、铁素体含量稀少之处,其析出量随固溶温度的升高而呈现出先增大后减小的趋势,在900℃时,析出量达到最大.材料的硬度与变形抗力会随着σ相析出量的增多而增大;σ相析出时引起的体积膨胀会引起奥氏体边部的硬度与杨氏模量增大;σ相析出也容易造成材料中微裂纹的形成.S32750双相不锈钢应在1020℃到1080℃温度范围内进行固溶,以获得较好的冷加工性能.  相似文献   

10.
高温时效对2205双相不锈钢冲击韧性的影响   总被引:1,自引:1,他引:0  
对2205双相不锈钢进行900℃保温不同时间的时效处理并对室温Ⅴ型缺口冲击功进行了测定。采用定量金相,扫描电镜(SEM),能谱分析(EDS)和透射电镜(TEM)等实验技术,对2205双相不锈钢经不同时效处理后的显微组织进行了分析,结果表明,在900℃时效处理的条件下,2205双相不锈钢组织由铁素体、奥氏体以及σ相组成;随着时效时间的延长,σ相的析出量逐渐增多,该钢种的冲击功随时效时间的延长显著降低,正是由于组织中脆性相σ相在α/γ晶界析出所造成;而且,2205钢的冲击功对σ相的含量非常敏感,当组织中σ相的含量达到5.32vol%时,其冲击功仅为32J。  相似文献   

11.
针对2205双相不锈钢多层多道手工电弧焊焊接接头,分别进行了不同温度的固溶处理;采用金相观察和力学性能测试相结合的方法对比分析了固溶处理及其温度对焊接接头显微组织及力学性能的影响规律.结果表明,随着固溶温度的升高,焊缝中σ相减少,而奥氏体含量增加;尽管固溶处理对2205双相不锈钢焊接接头的强度没有明显的影响,但能显著改善接头的塑性和冲击韧性;且随着固溶温度的升高,接头的断后伸长率、断面收缩率及冲击吸收能量也随之升高.  相似文献   

12.
2205双相不锈钢固溶处理工艺研究   总被引:3,自引:0,他引:3  
伍曦耘 《大型铸锻件》2009,(4):16-18,21
2205双相不锈钢在910~1300℃不同的温度保温40rain后,分别进行空冷或水冷固溶处理。用金相显微镜观察了2205双相不锈钢的显微组织,测定了组织α相的含量和显微硬度。结果表明:随着固溶处理温度的升高,α相含量逐渐升高。建议2205双相不锈钢的固溶处理工艺为固溶温度1070℃,保温40min,水冷。  相似文献   

13.
针对核电海水循环泵叶轮用双相不锈钢材料,研究了不同时效温度、时间及固溶后不同冷却速率对双相不锈钢组织和力学性能的影响,结果表明,在800-850℃保温5 min或冷却速率低于7.5℃/min时,材料的冲击韧性和延伸率急剧下降.OM,SEM和冲击断口观察及XRD分析证实,σ相的析出对力学性能有破坏性影响.且随着时效时间的延长,σ相变得粗大,析出位置从γ/δ相界扩展到整个δ相  相似文献   

14.
高温时效对2205双相不锈钢中σ相析出行为的影响   总被引:2,自引:0,他引:2  
对2205双相不锈钢进行了750、800、850、900和950℃分别保温0.5、1、2h的时效处理,采用定量金相、SEM和EDS、化学萃取、XRD和电子背散射衍射(EBSD)等方法研究了2205双相不锈钢中σ相析出与时效时间、温度的变化规律。结果表明:2205双相不锈钢经不同时效工艺处理后的组织主要由奥氏体、铁素体、σ相组成,σ相一般在γ/α相界处或铁素体内析出;在相同时效温度下,随着时间的延长,σ相的析出量明显增多,而在850℃进行时效处理会使钢中σ相的析出量达到最高值。此外,采用EBSD方法有望对2205双相不锈钢中的σ相进行准确的定量分析。  相似文献   

15.
《塑性工程学报》2016,(4):119-124
针对2205双相不锈钢超塑性扩散连接结构中σ相导致构件性能较差的问题,对2205双相不锈钢超塑性扩散连接后的试样进行后期固溶处理,结果发现,固溶处理能够溶解组织中的σ相,提高扩散连接接头性能。2205双相不锈钢在1 000℃,5min,10MPa条件下扩散连接后的界面结合强度为430MPa,基体强度为780MPa。经过1 350℃,10min的固溶处理后,界面结合强度达530MPa,比固溶前提高了约23%。固溶时间10min,固溶温度1 050℃~1 350℃时,固溶后的界面结合强度均高于固溶前,但界面结合强度随固溶温度的升高逐渐下降,当固溶温度为1 050℃时,界面结合强度达685MPa,达到固溶前基体强度的88%。  相似文献   

16.
《塑性工程学报》2015,(5):108-113
针对2205双相不锈钢超塑性扩散连接结构中σ相易导致构件性能差的问题,对2205双相不锈钢超塑性扩散连接后的试样进行后期固溶处理,发现固溶处理能够溶解组织中的σ相,提高扩散连接接头性能。2205双相不锈钢在1 000℃,10MPa保温保压5min,条件下扩散连接后的界面结合强度为430MPa,基体强度为780MPa。经过1350℃,10min的固溶处理后,界面结合强度达530MPa,比固溶前提高了约23%。固溶时间10min,固溶温度1 050℃~1 350℃时,固溶后的界面结合强度均高于固溶前,但界面结合强度随固溶温度的升高逐渐下降,当固溶温度为1 050℃时,界面结合强度达685MPa,达到固溶前基体强度的88%。  相似文献   

17.
《塑性工程学报》2016,(3):125-132
对高温固溶后的SAF2906双相不锈钢进行时效处理,固溶温度为1 200℃,保温时间1h,时效温度为650℃、700℃、750℃、800℃、850℃、900℃、950℃,采用扫描电镜(SEM)、X射线衍射(XRD)以及透射电镜(TEM)等方法观察SAF2906双相不锈钢中析出相的形态,采用EDS能谱测量析出相中各化学元素的含量,通过恒温拉伸机对试样进行恒温拉伸,分析在不同实验温度下试样伸长率的变化。结果表明,在本实验条件下σ相的析出量随时效温度的升高先增大后减小,在约850℃达到最大,SAF2906双相不锈钢中的σ析出相分布规律与同类型双相不锈钢相比有相似之处,形核位置大部分出现在α-铁素体内部和γ-奥氏体/α-铁素体两相之间,但有部分析出相出现在γ-奥氏体内部;σ相在超塑拉伸过程变形后期容易导致断裂,在变形温度为850℃与900℃时,试样伸长率分别可以达到382%和538%,当温度为950℃时,随着保温时间的延长,σ相在试样中的比例不断下降,同时试样伸长率不断上升,当保温时间达到5min时,σ相比例5%,此时伸长率可达1 000%。  相似文献   

18.
《塑性工程学报》2015,(5):100-107
对高温固溶之后的SAF2906双相不锈钢进行时效处理,固溶温度为1200℃,保温时间1h,时效温度为650℃、700℃、750℃、800℃、850℃、900℃和950℃,采用扫描电镜(SEM)、X射线衍射(XRD)以及透射电镜(TEM)等方法观察SAF2906双相不锈钢中析出相的形态,用EDS能谱测量析出相中各化学元素的含量,通过恒温拉伸机对试样进行恒温拉伸,分析在不同实验温度下试样伸长率的变化。实验结果表明,在本实验条件下,σ相的析出量随时效温度的升高呈现先增大后减小的趋势,在850℃左右达到最大,SAF2906双相不锈钢中的σ析出相分布规律与同类型双相不锈钢有相似之处,形核位置大部分在α-铁素体内部和γ-奥氏体/α-铁素体两相之间,部分析出相出现在γ-奥氏体内部;σ相在超塑拉伸过程变形后期容易导致断裂,在变形温度为850℃与900℃时,试样伸长率分别可以达到382%和538%,当温度为950℃时,随着保温时间的延长,σ相在试样中的比例不断下降,同时试样伸长率不断上升,当保温时间长于5min,σ相比例下降到5%以下,此时伸长率可达1000%。  相似文献   

19.
通过SEM和EDS对2205双相不锈钢的维氏硬度及矫顽磁力的测量.研究了2205双相不锈钢在时效条件下σ相的析出规律,分析了σ析出相对2205双相不锈钢的维氏硬度及其矫顽磁力的影响.结果表明:仃析出相的多少与时效时间成正比,与时效温度成反比.σ析出相越多,其硬度越高,2205不锈钢经800℃时效8 h后,基体铁素体发生分解,其矫顽磁力为零.  相似文献   

20.
对1050 ℃固溶处理后的2205双相不锈钢在650~1000 ℃下时效处理,利用金相显微镜(OM)和扫描电镜(SEM)观测不同工艺条件下σ相析出规律,绘制了σ相析出TTP曲线图,描述了σ相析出特征。结果表明:时效初期,σ相优先在铁素体与奥氏体相界处形核,随着时效温度的升高和时效时间的增加,σ相不断长大、粗化并向铁素体基体内延伸;时效时间越长,析出相越多,时效时间相同时,当温度达到850 ℃,析出量达到最大值,之后随着温度的升高而降低。σ相析出温度范围为650~950 ℃,析出鼻尖温度为850 ℃,轧制变形量增加,σ相析出速度加快,但并不影响其析出的鼻尖温度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号