首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
在竖直长管内进行弱点火条件下甲烷—煤粉复合爆炸实验,研究了甲烷煤粉配比浓度、煤粉粒径、点火延迟时间等初始状态参数对复合爆炸特性的影响。结果表明:火焰传播越快,压力上升越显著,最大压力上升速率出现在爆炸初期,当火焰传播至管末端后,压力达到最大值;低浓度甲烷添加煤粉后,爆炸压力显著增大;煤粉粒径越小,复合爆炸压力越大,压力上升速率越大;最大爆炸压力和最大压力上升速率随着煤粉浓度增大和点火延迟时间增加先上升后下降,存在峰值点。  相似文献   

2.
毕明树  李江波 《煤炭学报》2010,35(8):1298-1302
在1.2 m长竖直爆炸管内对不同初始条件下的甲烷-煤粉混合物进行了弱点火火焰传播实验。分别考察了甲烷浓度、煤粉浓度、煤粉粒径以及点火延迟时间对复合爆炸火焰传播特性的影响。结果表明,煤粉的存在使得纯甲烷在空气中爆炸火焰传播速度显著增大,最大火焰传播速度出现在距离点火端0.425 m(长径比等于6)处;火焰传播至长管末端壁面后,爆炸压力达到最大值;甲烷浓度越接近化学当量比,火焰传播速度越快;火焰传播速度随煤粉浓度和点火延迟时间的变化趋势为先增大后减小,最佳煤粉浓度为500 g/m3,最佳点火延迟时间为500 ms;在一定粒径范围内,火焰传播速度随着煤粉粒径的增大而减小。  相似文献   

3.
为了探索瓦斯在煤矿井下复杂巷网内爆炸后的超压演化规律及火焰传播特性,在实验室自行搭建了瓦斯爆炸试验系统,对甲烷体积分数为9.5%的瓦斯爆炸爆燃波传播规律进行了试验研究,并对瓦斯爆炸超压及火焰传播过程进行了数值模拟。试验与数值模拟结果表明:管网角联分支中,甲烷-空气预混气体爆炸后由于爆炸压力波的叠加,形成超压增高区域,但产生的火焰波很微弱,温度较低。并联分支中,随着爆燃波传播距离的增加,超压峰值和焰面传播速度呈逐渐减小的趋势,而火焰持续时间呈先增加、再减小的趋势。试验中火焰的最大传播距离为18.75 m,而数值模拟的传播距离为21.25 m,但试验值和模拟值的变化趋势一致。研究结论可对煤矿井下复杂巷道内瓦斯爆炸灾害的防控及救灾提供理论支持。  相似文献   

4.
为了研究煤矿井下设备尺寸及安装位置对瓦斯爆炸特性的影响,利用自行搭建的小型瓦斯爆炸实验平台开展了不同阻塞率障碍物在管道内位置的变化对甲烷/空气混合气体爆炸特性影响的研究。结果表明,在阻塞率相同时,到达管道末端的时间随着障碍物距离点火源位置的减小而减小,障碍物距离点火源越近、阻塞率越大,火焰到达管道末端的时间越短,障碍物对传播火焰前期的影响要大于对传播火焰后期的影响;随着距离点火源位置的增加,不同阻塞率的障碍物对爆炸压力峰值呈现先增大后减小的变化规律,障碍物的位置在距离点火源400 mm时,爆燃压力峰值达到最大;在相同管道位置下,爆炸压力峰值随着障碍物的阻塞率的增加而增加。研究结果可为井下设备设计及安装位置提供理论支撑。  相似文献   

5.
《煤炭学报》2021,46(2)
在全透明有机玻璃管道中,利用同步控制系统、高速摄像系统和高速粒子成像测速系统(PIV),从爆炸超压、火焰传播速度、火焰温度和复合火焰演化规律等方面研究了不同瓦斯爆炸强度条件下诱导沉积煤尘爆炸特性和复合火焰传播特性,并分析了煤尘卷扬湍流特征。实验结果表明:3种工况下,随着甲烷体积分数的增加,爆炸超压和压力上升速率明显增高,压力峰值来临时刻减小,且当体积分数超过8.5%后,压力曲线和压力上升速率曲线出现明显的振荡特征;复合火焰传播速度远大于纯瓦斯爆炸工况,且复合火焰传播速度-位置曲线均呈波动上升特征;甲烷的体积分数越接近当量比,爆炸超压、波前流速、火焰锋面温度及其温度上升速率越高;甲烷体积分数为9.5%和8.5%时,复合火焰呈"倒钩形",之后很快出现火焰加速;而甲烷体积分数降至8.5%后,复合火焰亮度降低,结构呈现破碎和不连续的形态特点。PIV测试表明:甲烷体积分数为9.5%时,初始爆炸强度高,波前流速快,煤粉可随冲击波整体快速运动,卷扬区整体湍流强度较高,大大加快了煤粉与空气的混合速度,促进了卷扬煤粉的燃烧。较高的冲击波波前流速和火焰锋面温度2种参数相结合是造成甲烷/煤尘复合火焰不断加速的原因。  相似文献   

6.
《煤矿安全》2020,(2):1-4
针对矿井封闭火区内瓦斯爆炸特性问题,通过FLACS软件建立简单的密闭空间,模拟了瓦斯爆炸传播中的压力、温度和火焰的发展变化过程。结果表明:压力波的反射作用导致瓦斯爆炸压力曲线反复波动,出现多个压力峰值;各点温度在距离燃料区较近区域波动幅度小,在稍远的距离波动幅度大,而在距末端较近的距离,温度值较前面的监测点而言值非常小;火焰会出现反向传播的现象,之后出现湍流现象,直至反应结束。  相似文献   

7.
通过建立长为4 m、断面尺寸为80 mm×80 mm的绝热巷道,运用AutoReaGas软件研究了9.5%浓度的甲烷/空气预混气体的爆炸特性。研究结果表明:在距离点火源1.2 m之前,前驱冲击波尚未形成,超压历史曲线只有1个极值;在距离点火源1.4 m之后,前驱冲击波和火焰锋面分别形成2个超压极值。最大超压随着距离的增大先逐渐减小至最小值160.459 kPa,随后开始增大,直至达到最大值204.235 kPa,接着又开始减小。火焰传播速度在距离点火源0.72 m时为212.5 m/s,随着传播距离的增加而逐渐增大,到距离点火源3.2 m处增加到381.3 m/s。  相似文献   

8.
《煤炭学报》2021,46(6)
在实际矿井下,瓦斯泄漏后往往在巷道密闭空间内形成分层的、含体积分数梯度的甲烷-空气混合物。目前,国内外研究大多集中在均匀预混瓦斯爆炸火焰传播特性方面。为探究非均匀预混瓦斯爆炸火焰传播特性,通过自主搭建的小尺寸爆炸实验平台,对比研究了管道内甲烷不同自由扩散时间下,甲烷沿管道体积分数梯度分布及非均匀预混甲烷/空气爆炸火焰传播特性。实验通过浓度传感器、高速摄像机、压力传感器获取不同工况下非均匀甲烷爆炸过程中的甲烷体积分数分布、火焰传播结构、甲烷爆炸超压等数据,并进一步分析得出火焰传播速度、爆炸压升曲线等。结果表明:甲烷在管道内泄漏后,受浮力作用沿管道顶部横向传播,同时受体积分数差向底部纵向扩散,形成横向及纵向的体积分数梯度场,且自由扩散时间越短,体积分数梯度越大。体积分数梯度场对管道内非均匀甲烷爆炸火焰传播结构与爆炸超压有显著影响。甲烷体积分数梯度场下形成的非均匀预混火焰在管道内传播经历球形、指形、三重火焰、拉伸三重火焰4个阶段。当甲烷沿管道形成纵向体积分数梯度时,管道内出现三重火焰,且体积分数梯度越大,三重火焰结构愈发明显,三重火焰形态出现后,火焰传播速度、爆炸超压迅速下降,管道内甲烷纵向体积分数分布为16%—4.6%—0时,三重火焰稳定传播时火焰速度约为4.8 m/s。随三重火焰继续传播,火焰传播速度、爆炸超压略有上升趋势。管道内甲烷空气非均匀预混时爆炸超压呈现2个峰值,后波峰压力峰值约为前波峰2/3,压力峰值间隔时间随体积分数梯度减小而减小,且在不同体积分数梯度下,甲烷体积分数越接近当量比时火焰传播速度越快,爆炸超压越高。  相似文献   

9.
甲烷与空气预混管内爆炸火焰传播特性试验   总被引:3,自引:0,他引:3  
借助高速摄影、光电传感器和压力传感器,研究了有机玻璃管道(100 mm × 100 mm×1 500 mm)内预混甲烷与空气气体爆炸火焰传播特性.结果表明:点火后测点处压力信号、光信号起跳基本同步,但在光最强时刻后出现峰值压力,且压力持续时间较长;布有重复障碍片时火焰绕流加速湍流,爆炸压力和火焰速度明显提高;分析高速摄像照片,认为火焰传播过程有成长、加速及消失3个阶段.  相似文献   

10.
运用AutoReaGas软件建立了长为100 m,截面为0.08 m×0.08 m的爆炸巷道,其中前10 m巷道均匀充满体积分数9.5%的甲烷与空气预混气体。结果表明:在瓦斯爆炸传播过程中,最大超压呈现先减小、后增大、再减小的变化过程,它在火焰熄灭的位置附近达到最大。最大燃烧速率和火焰传播速度均随着传播距离的增加而增大,取得最大值后又开始减小。最大超压和最大气流速度在距离点火源35 m时均已减小为零,最大密度在此点也减小为原始密度,此条件下的防爆安全距离为35 m。最大燃烧速率和火焰传播速度在距离点火源17 m时均已减小为零,火焰锋面传播的最大距离为17 m。气体发生逆流与火焰的存在有关。研究成果可为煤矿瓦斯爆炸最佳避灾路线的确定、爆炸发生后的抢险救灾、事故的调查等提供参考。  相似文献   

11.
运用计算流体力学分别对常温、高温条件下的瓦斯爆炸过程进行了数值模拟研究,模拟结果清晰地反映了爆炸后不同时刻流场中爆炸压力、火焰温度、各组分浓度等参数的分布特征。研究发现,随着环境温度的升高,化学反应速率加快,爆炸后火焰温度的升高主要是由于初始气体温度升高带来的热量。  相似文献   

12.
《煤矿安全》2021,52(2):1-6
为了研究不同环境温度条件下预混瓦斯气体爆炸特性参数的变化和危险性,利用20 L爆炸特性实验装置,采用夹层和内腔双加热、高压放电点火的方法,对不同环境温度(20~200℃)瓦斯爆炸压力特性、爆炸燃烧特性参数、爆炸极限等参数进行了测试。研究表明:在实验条件下,爆炸最大压力、爆炸反应时间、爆炸点火延迟时间均随环境温度的升高而逐渐降低或减少;当环境温度升高至200℃时,爆炸最大压力降低了43.8%,而爆炸反应时间、点火延迟时间分别减少了54、14.4 ms;压力上升速率受温度影响较小;随环境温度升高,分子内能增加,原来稳定的不燃系统越容易变成可燃、可爆系统,爆炸极限范围变宽。  相似文献   

13.
甲烷-煤尘复合爆炸威力实验   总被引:4,自引:0,他引:4       下载免费PDF全文
毕明树  王洪雨 《煤炭学报》2008,33(7):784-788
建立了由压力变送器、数据采集卡、计算机和电极点火装置组成的密闭空间甲烷-煤尘复合爆炸实验系统,动态响应时间小于1 ms,测试精度为0.5级.对甲烷-煤尘复合爆炸威力进行了系统的实验研究.结果表明:密闭空间内甲烷-煤尘复合爆炸的最危险爆炸条件为甲烷浓度5%,煤尘浓度500 g/m3,煤尘粒径26 μm,点火延迟时间40 ms;最大爆炸压力与甲烷浓度、煤尘浓度和点火延迟时间呈二次函数关系;最大爆炸压力随着煤尘粒径的增大而减小.甲烷的存在使得纯煤尘在空气中的爆炸下限降低,而爆炸压力增大;同样,煤尘的存在使得甲烷的爆炸下限降低,而爆炸压力升高.  相似文献   

14.
为揭示管道内甲烷-煤尘预混湍流特征及爆炸火焰传播过程,构建了竖直管道内甲烷-煤尘预混扩散及爆炸物理数学模型;基于流体力学及传热-传质理论,对管道内甲烷-煤尘扩散特征和爆炸过程进行了数值模拟。划分了管道内气固两相扩散特征阶段,分析了初始真空度和进气压力对扩散湍流强度的影响规律;研究了煤尘粒径、浓度及甲烷浓度对爆炸最大压力及最大爆炸压力上升速率的影响特征;揭示了管道内甲烷-煤尘预混爆炸过程中火焰传播特征及爆炸机制。结果表明:煤尘颗粒在竖直管道罐内扩散可分为快速注入、减速分散、稳定和沉降4个连续阶段,初始真空度及进气压力对湍流强度均有影响;爆炸过程中,不同时刻下管道整体爆炸压力场基本均匀分布。甲烷浓度、煤尘浓度及粒径与最大爆炸压力P_(max)及最大爆炸压力上升速率(dP/dt)_(max)均呈现二次函数关系;不同时刻下爆炸火焰结构及火焰高度、火焰传播速度的模拟与试验结果具有较好的一致性,火焰结构呈现"月牙-S-下凹月牙-指尖"传播至爆炸结束。温度分布不均,高温区集中在管道上部和中下部。火焰传播速度先增大后减小,后期呈现震荡性特征。  相似文献   

15.
用自行设计的煤尘爆炸腔体与方形断面为80 mm×80 mm的管道连接进行煤尘爆炸传播试验研究,主要研究了煤尘爆炸的特性参数冲击波、火焰和比冲量等在爆炸传播过程中随距离的变化特性。结果表明,受限空间煤尘爆炸火焰区传播距离远大于原始积聚区长度,爆炸存在明显感应期和冲击波回传现象,爆炸传播过程中各测点冲击波压力随传播距离先升后降,而比冲量随距离衰减较慢,作用时间较长。  相似文献   

16.
《煤矿安全》2017,(6):97-100
针对瓦斯爆炸火焰、温度及超压动态特性的测试要求,设计了瓦斯爆炸测试系统;对系统中的火焰形状、传播速度测试、超压测试、温度测试及同步控制等关键技术进行了深入地研究。测试系统主要由实验管道、配气系统、点火装置、火焰高速摄像、高频压力传感器及微细热电偶等组成,能够实现瓦斯爆炸过程中火焰形状及其传播速度、温度及超压等动态参数的精确测量,可满足瓦斯爆炸威力分析和灾害程度评估的数据测试需要。  相似文献   

17.
为研究不同湍流环境下,煤尘对甲烷爆炸特性的影响,基于20 L爆炸球采用0、25、50、100、200 g/m^3的煤尘分别与6.5%、9.5%、12%的甲烷在点火延迟时间60 ms和120 ms的条件下进行混合爆炸实验。结果表明:点火延迟时间的增大对单相甲烷爆炸最大爆炸压力影响较小,显著降低最大压力上升速率;有煤尘参与时,3种甲烷浓度下,点火延迟时间的提高能够降低最大爆炸压力和最大压力上升速率,当甲烷浓度为9.5%时,2种点火延迟时间下,对应的最佳煤尘浓度不同,点火延迟时间越小,最佳煤尘浓度越小,甲烷浓度为12%时,点火延迟时间为60 ms时,最大爆炸压力和最大压力上升速率对高浓度煤尘比较敏感,火延迟时间为120 ms时,最大爆炸压力和最大压力上升速率对低浓度煤尘较为敏感。  相似文献   

18.
环境压力对瓦斯爆炸特性有明显影响。针对处于高压环境的瓦斯气体爆炸特性,运用流场模拟软件对瓦斯爆炸过程进行数值模拟,对爆炸过程中的压力场、温度场和速度场进行分析。数值模拟结果表明:当环境压力为2.0 MPa范围内时,最大爆炸压力随着环境压力的升高成倍增加;随着初始环境压力的增大,各测点火焰的到达时间相应变短,爆炸温度也同比升高;初期燃烧过程受环境压力影响明显,在前20 ms内,燃烧速度随环境压力的升高先下降后上升,而终态燃烧速度基本一致。  相似文献   

19.
为研究煤矿巷道复杂条件下的瓦斯爆炸传播特性,通过FLACS数值模拟了巷道截面突变对瓦斯爆炸过程中的压力、温度及火焰传播速度的影响。结果表明,当巷道截面发生突变时,各测点压力峰值和温度峰值均增大;横截面突扩面积越大,火焰峰面表面积越大,火焰传播速度就越小,横截面突缩面积越小,火焰传播至突缩段时产生的湍流作用越明显,使得火焰传播速度加快,同时火焰峰面被拉伸的越长;巷道截面突变使气流的湍流强度增大,爆炸反应速率加快,因此其火焰传播速度均大于截面未突变巷道内的火焰传播速度。  相似文献   

20.
为研究含弱约束受限空间内甲烷爆炸压力升高及沿扩散管的传播特征,对不同体积分数甲烷的爆炸特征参数进行了系列实验。获得了含弱约束结构受限空间在不同浓度甲烷爆炸时的压力升高规律,研究表明,含弱约束受限空间内的甲烷爆炸压力升高趋势类似封闭空间,但压力峰值远小于封闭空间,封闭空间最大压力是含弱约束结构空间的3.2倍。由于若约束结构的存在,甲烷体积分数较低时破膜压力较大,腔体内高压持续时间较短,而接近爆炸当量浓度时腔体内高压持续时间增长。扩散管中的爆炸压力和火焰传播规律随甲烷体积分数变化呈现明显不同。在实验条件下,当甲烷体积分数低于7.0%时,破膜激波与火焰锋面时间差最大为5.255 ms,扩散管中的火焰主要为膨胀火焰。而甲烷体积分数高于7.4%时,破膜激波与火焰锋面时间差为28~40 ms,说明在管外发生了二次爆炸,以湍流火焰为主。爆炸压力的沿管道传播则分为3种情况,甲烷体积分数低于7.0%时,爆炸压力随传播距离增大而减小;甲烷体积分数为7.4%和11.0%时,爆炸压力随传播距离增大呈线性增大;甲烷浓度为当量浓度时,其压力传播特征类似于全管道甲烷爆炸的特征,随传播距离呈现锯齿形增大。实验结论对天然气长输管道、LNG和CNG储罐检修过程中的爆炸事故预防和含弱约束结构的其他气体泄爆具有参考意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号