首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 130 毫秒
1.
J YamashitaT Hirano  M Shioya 《Carbon》2002,40(9):1541-1548
Mesoporous carbon films were prepared from poly(vinylidene fluoride) through liquid-phase dehydrofluorination (DHF)-treatment, carbonization at a high temperature and activation in carbon dioxide gas. The adsorption capacity of the resultant carbon was investigated by using nitrogen and methylene blue as adsorbates. The maximum adsorption capacity was obtained for the activated carbon prepared by applying a slight extent of DHF-treatment. The growing process of the pores in this carbon during activation was considered based on the changes of mass, pore volume and surface area. In order to increase the pore size in the activated carbon, it was essential to increase the pore size in the carbon before activation. The application of a slight extent of DHF-treatment was effective to increase the pore size in the carbon before activation.  相似文献   

2.
Microfibers of kraft lignin blended with poly(ethylene oxide) (PEO) were produced by electrospinning of the solution of lignin and high molecular weight poly(ethylene oxide) (PEO) in alkaline water. Interactions between lignin and PEO in alkaline aqueous solutions create association complexes, which increases the viscosity of the solution. The effect of polymer concentration, PEO molecular weight, and storage time of solution before spinning on the morphology of the fibers was studied. It showed that after one day the viscosity dropped and fiber diameter decreased. Results from the solutions in alkaline water and N,N‐dimethylformamide (DMF) with different polymer concentrations were compared. The 7 wt % of (Lignin/PEO: 95/5 wt/wt) in alkaline aqueous solution was successfully spun and the ratio of PEO in lignin/PEO mixture could be further reduced. In comparison, higher concentrations were needed to prepare a spinning solution in DMF and fiber diameters were in a much smaller range. The final target of spinning lignin is to produce carbonized fibers. Fibers spun from aqueous solutions had lower PEO content, which is a big advantage for the carbonization process as it reduces the challenges regarding melting of the fibers or void creation during carbonization. Furthermore, the larger diameter of these fibers inhibits disintegration of the carbonized fibers, which happens due to the mass loss during the process. © 2014 The Authors Journal of Applied Polymer Science Published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41260.  相似文献   

3.
Won Keun Son  Taek Seung Lee 《Polymer》2004,45(9):2959-2966
The effects of solution properties and polyelectrolyte on the electrospinning of poly(ethylene oxide) (PEO) solutions were investigated. Ultrafine PEO fibers without beads were electrospun from 3, 4, 7 and 7 wt% PEO solutions in chloroform, ethanol, (dimethylformamide) DMF and water, respectively. At these concentrations, the values of [η]C were ∼10 for all solutions. The average diameters of PEO fibers were ranged from 0.36 to 1.96 μm. The higher the dielectric constant of solvent was, the thinner PEO fiber was. The average diameters of electrospun PEO fibers from PEO/water solutions were decreased and their distributions were narrowed by adding 0.1 wt% poly(allylamine hydrochloride) (PAH) and poly(acrylic acid sodium salt) (PAA) due to the increased charge density in solutions. The addition of PAH and PAA lowered the minimum concentration for electrospinning of a PEO/water solution to 6 wt%.  相似文献   

4.
Electrospinning of sodium alginate with poly(ethylene oxide)   总被引:1,自引:0,他引:1  
Jian-Wei Lu 《Polymer》2006,47(23):8026-8031
Another natural biopolymer, sodium alginate, has been electrospun from aqueous solution by blending with a non-toxic, biocompatible, synthetic polymer poly(ethylene oxide) (PEO). The interaction between sodium alginate and PEO has been evidenced by FTIR and conductivity change, which is thought to be the main reason for the successful electrospinning. The solution properties of sodium alginate/PEO blends have been measured, including viscosity, conductivity and surface tension. The morphology and mechanical properties of the electrospun mats have been investigated. Smooth fibers with diameters around 250 nm are obtained from 3% solutions of varied alginate/PEO proportions ranging from 1:1 to 0:1. Tensile strength around 4 MPa is found with smooth fiber mats. The anti-water property of the electrospun mats has been improved by a combination of hexamethylene diisocyanate and aqueous calcium chloride cross-linkings.  相似文献   

5.
Wu Aik Yee  Ye Liu 《Polymer》2007,48(2):512-521
The morphology, polymorphism behavior and molecular orientation of electrospun poly(vinylidene fluoride) (PVDF) fibers have been investigated. We found that electrospinning of PVDF from its N,N-dimethylformamide/acetone solutions led to the formation of β-phase. In contrast, only α- and γ-phase was detected in the spin-coated samples from the same solutions. In the aligned electrospun PVDF fibers obtained using a rotating disk collector, the β-phase crystallites had a preferred orientation along the fiber axis. The degree of orientation did not, however, vary significantly with the speed of the rotation disk collector, and the β-phase was also not significantly enhanced with the increase in the rotation speed or the decrease in the size of spinnerets. These facts indicated that the orientation was likely to be caused by Columbic force rather than the mechanical and shear forces exerted by the rotating disk collector and spinnerets. The Columbic force may induce local conformational change to straighter TTTT conformation, and hence promote the β-phase. The addition of 3 wt.% of tetrabutylammonium chloride (TBAC) into the polymer solutions effectively improved the morphology of the electrospun fibers, and led to almost pure β-phase in the fibers. With spin coating, PVDF-TBAC did not, however, show any strong β-phase diffraction peak. The synergistic β-enhancement effect of TBAC and electrospinning is possibly due to the fact that while TBAC could induce more trans conformers, electrospinning promotes parallel packing, and hence inter-chain registration.  相似文献   

6.
Continuous yarns from electrospun fibers   总被引:2,自引:0,他引:2  
A technique for making continuous uniaxial fiber bundle yarns from electrospun fibers is described. The technique consists of spinning onto a water reservoir collector and drawing the resulting non-woven web of fibers across the water before collecting the resulting yarn. Yarns from electrospun fibers of poly(vinyl acetate), poly(vinylidene difluoride) and polyacrylonitrile are used to illustrate the process of yarn formation and fiber alignment within the yarn. A theoretical production rate of 180 m of yarn per hour for a single needle electrospinning setup makes the process suitable for lab-scale production of electrospun yarns.  相似文献   

7.
Baji A  Mai YW  Li Q  Liu Y 《Nanoscale》2011,3(8):3068-3071
Poly(vinylidene fluoride) (PVDF) fibers with diameters ranging from 70 to 400 nm are produced by electrospinning and the effect of fiber size on the ferroelectric β-crystalline phase is determined. Domain switching and associated ferro-/piezo-electric properties of the electrospun PVDF fibers were also determined. The fibers showed well-defined ferroelectric and piezoelectric properties.  相似文献   

8.
Core/shell structured ultrafine fibers of poly(vinylidene fluoride) (PVDF)/polycarbonate (PC) were prepared by electrospinning their dispersions in a mixed solvent of N,N-dimethylformamide and tetrahydrofuran. The morphology of the obtained fibers viewed under a scanning electron microscope and a transmission electron microscope could be adjusted via introduction of poly(methyl methacrylate) (PMMA) or triethylammonium chloride (BTEAC). The viscosity of the dispersions increased with the increasing amount of PMMA in the range of 10-15 wt%, while the diameter of the dispersive spheral phase in the dispersions decreased. A proper amount of PMMA could decrease the resistance of the dispersive phase transformation in PVDF/PC dispersions, so that the uniform fibrous morphology and distinct core/shell structure were easily formed in the electrospun fibers. Because of the significant increase of the conductivity of the PVDF/PC dispersion, addition of 2 wt% BTEAC could also promote formation of the core/shell structure of electrospun PVDF/PC ultrafine fibers. Comparison between electrospun fibers of PVDF/PC, PVDF/PC/PMMA and PVDF/PC with BTEAC etched by chloroform showed that the core/shell structure of PVDF/PC with BTEAC was in the highest quality.  相似文献   

9.
Photochromic poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) fibers were prepared by electrospinning from a solution of copolymer and ester-functionalized nitrospiropyran (SPEST) molecules. The surface and internal features of the electrospun (ES) fibers were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and wide-angle X-ray diffraction (WAXD). The strong segregation of fluorine-rich groups on the fiber surface, which occurs during and/or after the electrospinning process, is driven by the lower surface tension for fluorine-rich groups and leads to encapsulation of SPEST predominantly near the core of the fibers, as confirmed by both X-ray photoelectron spectroscopy (XPS) and dynamic water contact angle (CA) measurements. The photochromic behavior of the spiropyran is preserved in the polymeric fibers, as confirmed by steady-state absorption and emission spectroscopy. Both isomeric forms of the photochrome in SP-PVDF-co-HFP were emissive, an effect that is thought to be due to the steric and/or electrostatic restrictions on the ring-opening reaction imposed by the fiber.  相似文献   

10.
以聚乙二醇为改性剂,采用静电纺丝法制备聚丙烯腈纤维。经预氧化、碳化过程制备了聚丙烯腈基碳纤维。用SEM、XRD等手段表征了碳纤维的微观形貌及结构。用XPS测试表征了碳纤维表面元素含量。用循环伏安测试法测试碳纤维电极材料的电化学性能。实验结果表明,当聚乙二醇加入量为4%时,得到的碳纤维电极材料电容性能最佳,其比电容值达到126.84F/g。  相似文献   

11.
Poly(p-phenylene vinylene) (PPV)/poly(ethylene oxide) (PEO) hybrid nanofibers were prepared by electrospinning a composite solution of PPV precursor/PEO in a mixture of ethanol and water, followed by thermal conversion. The precursor/PEO composite solutions were successfully electrospun into nanofibers with diverse helical, helical and linear, and helical bead-on-string morphologies by controlling the amount of aqueous PEO solution in a composite solution. Moreover, adding aqueous PEO solution to a precursor ethanol solution decreased the diameters of the fibers. The experimental data suggest that the viscosity, conductivity, and surface tension of the electrospinning solution are the main factors that influence the morphology of the fibers. Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) investigations indicated that the PPV precursor reacts with PEO during thermal conversion. Ultraviolet–visible (UV-vis) and photoluminescence (PL) spectra of the PPV-PEO nanofibers exhibited appreciable blue shifts with the addition of PEO, which made it possible to fabricate nanofibers with fluorescence ranging from yellow-green to blue. These highly fluorescent PPV/PEO nanofibers with various morphologies are potentially interesting for many applications, such as micro- and nanooptoelectronic devices and systems.  相似文献   

12.
Zhiqiang Su  Jingfeng Li  Qing Li  Tongyang Ni  Gang Wei 《Carbon》2012,50(15):5605-5617
An improved electrospinning technique was used to produce poly(ethylene oxide) (PEO) and PEO-multi-walled carbon nanotube (MWCNT) hybrid nanofibers. By this technique, both the orientation of MWCNTs in the electrospun PEO nanofibers and the orientation of electrospun PEO–MWCNT hybrid nanofibers can be controlled. The morphologies of the as-spun PEO–MWCNT hybrid nanofibers and the dispersion and orientation of MWCNTs in the fiber matrix were observed by scanning and transmission electron microscopy. The effect of electrospinning process and the incorporation of MWCNTs on the chain conformation and semicrystalline framework of PEO were examined by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, and differential scanning calorimetry, and compared with pure PEO and PEO–MWCNT films prepared by casting. Finally, to investigate how the fiber assemblies affect the mechanical and electrical properties of the hybrid materials, tensile testing and impedance analysis were performed on randomly oriented, uniaxially and biaxially oriented PEO–MWCNT hybrid nanofiber mats. The results indicated that both the uniaxially and biaxially oriented assembled hybrid materials have better tensile strength, modulus, and electrical conductivity compared with random nanofibers.  相似文献   

13.
The effects of multi-wall carbon nanotubes (MWCNTs) and poly(ethylene oxide) (PEO) on the structure formation, morphology, crystallization behavior and mechanical property of electrospun poly (l-lactic acid) (PLLA) nanofiber mats were investigated by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), differential scanning calorimeter (DSC) and mechanical test. If incorporate hard filler, MWCNTs into electrospun PLLA nanofiber, the crystallinity, chain orientation, and crystallization behaviors were almost not influenced by the MWCNTs content owing to the MWCNTs mainly acted as impeding the crystal growth and chain diffusion. If incorporate small content of soft and miscible component, PEO (10 wt%) into the electrospun PLLA and PLLA/MWCNTs nanofibers, the crystallinity and crystallization rate of PLLA in nanofibers were obviously enhanced. The synergistic effect of PEO and MWCNTs in PLLA nanofibers was observed during melt-crystallization behaviors of PLLA/MWCNTs fibers. Based on those results, we found that the chain mobility is an important factor to influence the structure formation and crystallization behaviors in the electrospun nanofibers. Our results indicated that the structure and properties of electrospun nanofibers could be optimized by compounding with hard inorganic filler and soft polymer components.  相似文献   

14.
Novel DNA/Polyethyleneoxide (PEO) electrospun fibers were obtained from aqueous solution. Key solution properties related to electrospinning: conductivity, surface tension and viscosity were determined. The ionic conductivity of the solution increased significantly with the addition of DNA and only slightly with increasing amounts of PEO; the surface tension decreased with the addition of PEO; the viscosity increased with the addition of either DNA or PEO. It was found that solutions containing both DNA and PEO had ideal properties for electrospinning. The use of these solutions resulted in the formation of ultrafine fibrous mats with fiber diameters of 50–250 nm. It was also found that the average diameter of electrospun fibers decreased with decreased feed rate, increased tip-to-collector distance and increase in the potential employed during electrospinning.  相似文献   

15.
This paper reports novel results regarding the effects of electrospun carbon nanofibers (e-CNF) as a catalyst support by comparison with the commercial Vulcan XC-72R (denoted as XC-72R) as granular particles. The e-CNF was synthesized by stabilizing and carbonizing the electrospun PAN-based fibers. The e-CNF showed an average diameter of 250 nm with a rough surface and was partially aligned along the winding direction of the drum winder. The characteristic morphology was fundamentally dependant on the shape of the carbon materials. The average pore size of the e-CNF was 2.36 nm, while that of the XC-72R was 10.92 nm. The morphology of e-CNF was developed by shallow pores with rough surfaces due to the effects of electrospinning and carbonization, while that of the XC-72R was largely developed by mesopores rather than micropores due to the granular shape. Compared to XC-72R, the performance of the MEA prepared by e-CNF was excellent, owing to the morphology and the enhanced electrical conductivity. The Pt utilization of Pt/e-CNF was 69%, while that of Pt/XC-72R was 35%.  相似文献   

16.
Polymeric fibers are prepared by using electric field driven fiber production technology—electrospinning and pressure driven fiber production technology—pressurized gyration. Fibers of four different polymers: polyvinylidene fluoride (PVDF), poly(methyl methacrylate (PMMA), poly(N‐isopropylacrylamide), and polyvinylpyridine (PVP), are spun by both techniques and differences are analyzed for their suitability as drug carriers. The diameters of electrospun fibers are larger in some cases (PVDF and PMMA), producing fibers with lower surface area. Pressurized gyration allows for a higher rate of fiber production. Additionally, drug‐loaded PVP fibers are prepared by using two poorly water‐soluble drugs (Amphotericin B and Itraconazole). In vitro dissolution studies show differences in release rate between the two types of fibers. Drug‐loaded gyrospun fibers release the drugs faster within 15 min compared to the drug‐loaded electrospun fibers. The findings suggest pressurized gyration is a promising and scalable approach to rapid fiber production for drug delivery when compared to electrospinning.  相似文献   

17.
In this paper, the effect of embedding vanadium pentoxide in electrospun carbon fiber was investigated in relation to textural properties and hydrogen storage behavior. Electrospun carbon fibers involving vanadium were prepared from polyacrylonitrile/N,N-dimethyl formamide/vanadium pentoxide through electrospinning method and heat treatment. Chemical activation of electrospun carbon fibers was carried out in order to generate the pore by using potassium hydroxide as a chemical agent. Eventually, vanadium embedded activated electrospun carbon fibers (AECFs) with high specific surface area 2780 m2/g were prepared as a hydrogen storage medium. As the effects of vanadium pentoxide, it was found that dissociated oxygen from vanadium pentoxide in electrospun fibers would generate the ultra-micropore (0.6 nm) by forming carbon monoxide and carbon dioxide during the carbonization. Also, vanadium in electrospun carbon fibers is considered to act as a catalyst for the improved capacity of hydrogen adsorption. Vanadium embedded AECFs have the high capacity of hydrogen storage, about 2.5 wt% at room temperature and 100 bar.  相似文献   

18.
海藻酸钠纤维的电纺性研究   总被引:2,自引:1,他引:1  
通过与生物相容的合成高分子聚环氧乙烷(PEO)共混,天然高分子海藻酸钠被成功电纺成丝。扫描电镜等测试结果表明:海藻酸钠a/PEO比例为6∶4时得到无串珠的光滑纤维,并且纤维直径分布均匀。用乙醇/氯化钙(CaCl)2处理电纺纤维,其疏水性得到极大改善。  相似文献   

19.
An electrospinning method was used to fabricate bioabsorbable amorphous poly(d,l-lactic acid) (PDLA) and semi-crystalline poly(l-lactic acid) (PLLA) nanofiber non-woven membranes for biomedical applications. The structure and morphology of electrospun membranes were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and synchrotron wide-angle X-ray diffraction/small angle X-ray scattering. SEM images showed that the fiber diameter and the nanostructured morphology depended on processing parameters such as solution viscosity (e.g. concentration and polymer molecular weight), applied electric field strength, solution feeding rate and ionic salt addition. The combination of different materials and processing parameters could be used to fabricate bead-free nanofiber non-woven membranes. Concentration and salt addition were found to have relatively larger effects on the fiber diameter than the other parameters. DSC and X-ray results indicated that the electrospun PLLA nanofibers were completely non-crystalline but had highly oriented chains and a lower glass transition temperature than the cast film.  相似文献   

20.
Polyurethane (PU) fibers were obtained by electrospinning of waterborne PU dispersions. As dispersion cannot be electrospun, a water‐soluble polymer (poly (ethylene oxide) (PEO)) was dissolved in the PU dispersion and fibers were obtained from electrospinning the resulting mixture. Pure PU fibers were obtained after removing PEO with water extraction. Continuous PU fibers were obtained using a PU/PEO weight ratio higher than 2.5. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号