首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with the problem of stochastic stability analysis for a class of genetic regulatory networks with Markovian jump parameters and time‐varying delays. A delay‐dependent stability criterion is derived by using a novel mode‐dependent Lyapunov functional. The derived stability criterion is expressed in terms of linear matrix inequalities and is less conservative than the existing ones in the literature. A numerical example is provided to demonstrate the effectiveness of the proposed stability criterion. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

2.
This paper presents several new robust stability conditions for linear discrete‐time systems with polytopic parameter uncertainties and time‐varying delay in the state. These stability criteria, derived by defining parameter‐dependent Lyapunov functions, are not only dependent on the maximum and minimum delay bounds, but also dependent on uncertain parameters in the sense that different Lyapunov functions are used for the entire uncertainty domain. It is established, theoretically, that these robust stability criteria for the nominal and constant‐delay case encompass some existing result as their special case. The delay‐dependent and parameter‐dependent nature of these results guarantees the proposed robust stability criteria to be potentially less conservative.  相似文献   

3.
This paper studies the stability of linear systems with interval time‐varying delays. By constructing a new Lyapunov–Krasovskii functional, two delay‐derivative‐dependent stability criteria are formulated by incorporating with two different bounding techniques to estimate some integral terms appearing in the derivative of the Lyapunov–Krasovskii functional. The first stability criterion is derived by using a generalized integral inequality, and the second stability criterion is obtained by employing a reciprocally convex approach. When applying these two stability criteria to check the stability of a linear system with an interval time‐varying delay, it is shown through some numerical examples that the first stability criterion can provide a larger upper bound of the time‐varying delay than the second stability criterion. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
By employing the information of the probability distribution of the time delay, this paper investigates the problem of robust stability for uncertain systems with time‐varying delay satisfying some probabilistic properties. Different from the common assumptions on the time delay in the existing literatures, it is assumed in this paper that the delay is random and its probability distribution is known a priori. In terms of the probability distribution of the delay, a new type of system model with stochastic parameter matrices is proposed. Based on the new system model, sufficient conditions for the exponential mean square stability of the original system are derived by using the Lyapunov functional method and the linear matrix inequality (LMI) technique. The derived criteria, which are expressed in terms of a set of LMIs, are delay‐distribution‐dependent, that is, the solvability of the criteria depends on not only the variation range of the delay but also the probability distribution of it. Finally, three numerical examples are given to illustrate the feasibility and effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
This paper concerns delay‐range‐dependent robust stability and stabilization for time‐delay system with linear fractional form uncertainty. The time delay is assumed to be a time‐varying continuous function belonging to a given range. On the basis of a novel Lyapunov–Krasovskii functional, which includes the information of the range, delay‐range‐dependent stability criteria are established in terms of linear matrix inequality. It is shown that the new criteria can provide less conservative results than some existing ones. Moreover, the stability criteria are also used to design the stabilizing state‐feedback controllers. Numerical examples are given to demonstrate the applicability of the proposed approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, the problem of robust sampled‐data control for Itô stochastic Markovian jump systems (Itô SMJSs) with state delay is investigated. Using parameters‐dependent Lyapunov functionals and some stochastic equations, we give stochastic sufficient stability criteria for polytopic uncertain Itô SMJSs. As a corollary, stochastic sufficient stability criteria are given for nominal Itô SMJSs. For this two cases of Itô SMJSs, based on the obtained stochastic stability criteria, their time‐independent sampled‐data controllers are designed, respectively. Then, for designing a time‐dependent sampled‐data controller for Itô SMJSs, a parameters‐dependent time‐scheduled Lyapunov functional is developed. New stochastic sufficient stability criteria are obtained for polytopic uncertain Itô SMJSs and nominal Itô SMJSs. Furthermore, their time‐dependent sampled‐data controllers are designed, respectively. Lastly, a numerical example is provided to illustrate the effectiveness of the proposed method.  相似文献   

7.
This paper deals with the problem of stability and robust control for both certain and uncertain continuous‐time singular systems with state delay. Systems with norm‐bounded parameter uncertainties are considered. Robust delay‐dependent stability criteria and linear memoryless state feedback controllers based on linear matrix inequality are obtained. By choosing some Lyapunov‐Krasovskii functionals, neither model transformation nor bounding for cross terms is required in the derivation of our delay‐dependent results. Finally, numerical example is provided to illustrate the effectiveness of the proposed method.  相似文献   

8.
This paper is concerned with the reliable controller design problem for a class of singular systems with interval time‐varying delay and norm‐bounded uncertainties. A more practical model of actuator failures than outages is considered. First, by constructing a novel Lyapunov–Krasovskii functional combined with Finsler's Lemma, an improved delay‐range‐dependent stability criterion for the nominal unforced singular time‐delay system is established in terms of linear matrix inequality (LMI). Then, based on this criterion, an LMI condition for the design of a reliable state feedback controller is presented such that, for all parameter uncertainties and actuator failures, the resultant closed‐loop system is regular, impulse‐free and stable. Numerical examples are proposed to illustrate the effectiveness of the proposed method. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

9.
This paper presents a new insight into the delay‐dependent stability for time‐delay systems. Because of the key observation that the positive definiteness of a chosen Lyapunov–Krasovskii functional does not necessarily require all the involved symmetric matrices in the Lyapunov–Krasovskii functional to be positive definite, an improved delay‐dependent asymptotic stability condition is presented in terms of a set of LMIs. This fact has been overlooked in the development of previous stability results. The importance of the present method is that a vast number of existing delay‐dependent results on analysis and synthesis of time‐delay systems derived by the Lyapunov–Krasovskii stability theorem can be improved by using this observation without introducing additional variables. The reduction of conservatism of the proposed result is both theoretically and numerically demonstrated. It is believed that the proposed method provides a new direction to improve delay‐dependent results on time‐delay systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This paper revisits the problem of delay‐dependent robust ? filtering design for a class of continuous‐time polytopic linear systems with a time‐varying state delay. Based on a newly developed parameter‐dependent Lyapunov–Krasovskii functional combined with Projection Lemma and an improved free‐weighting matrix technique for delay‐dependent criteria, a new sufficient condition for robust ? performance analysis is first derived and then the filter synthesis is developed by using a simple matrix inequality linearization technique. It is shown that the desired filters can be constructed by solving a set of linear matrix inequalities. Finally, two simulation examples are given to show the effectiveness and less conservatism of the proposed method in comparison with the existing approaches. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This paper investigates the adaptive finite‐time robust control problem of a class of nonlinear time‐delay Hamiltonian systems via the Lyapunov‐Krasovskii (L‐K) method, and proposes some delay‐dependent results on the issue. Different from existing works, this paper first presents a time‐varying finite‐time stability (FTS) criterion via an L‐K functional approach, and obtains two FTS conditions by constructing specific L‐K functionals. Then, the adaptive finite‐time robust control problem is investigated for nonlinear time‐delay port‐controlled Hamiltonian (PCH) systems, and a control design procedure is presented. Finally, the effectiveness of the results is demonstrated by an illustrative example.  相似文献   

12.
The problem of robust absolute stability for time‐delay Lur'e systems with parametric uncertainties is investigated in this paper. The nonlinear part of the Lur'e system is assumed to be both time‐invariant and time‐varying. The structure of uncertainty is a general case that includes norm‐bounded uncertainty. Based on the Lyapunov–Krasovskii stability theory, some delay‐dependent sufficient conditions for the robust absolute stability of the Lur'e system will be derived and expressed in the form of linear matrix inequalities (LMIs). These conditions reduce the conservativeness in computing the upper bound of the maximum allowed delay in many cases. Numerical examples are given to show that the proposed stability criteria are less conservative than those reported in the established literatures.  相似文献   

13.
This paper studies robust stability for a class of uncertain nonlinear stochastic time‐delay systems. In terms of a linear matrix inequality, an improved delay‐dependent condition guaranteeing that a stochastic delay system will be exponentially stable in the mean square is proposed. This condition is less conservative than existing ones in the literature and is demonstrated by means of an example.  相似文献   

14.
This paper deals with the problem of robust stability analysis for uncertain neutral systems. In terms of a linear matrix inequality (LMI), an improved delay‐dependent asymptotic stability criterion is developed without using bounding techniques on the related cross product terms. Based on this, a new delay‐dependent LMI condition for robust stability is obtained. Numerical examples are provided to show that the proposed results significantly improve the allowed upper bounds of the delay size over some existing ones in the literature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Semi‐Markovian jump systems, due to the relaxed conditions on the stochastic process, and its transition rates are time varying, can be used to describe a larger class of dynamical systems than conventional full Markovian jump systems. In this paper, the problem of stochastic stability for a class of semi‐Markovian systems with mode‐dependent time‐variant delays is investigated. By Lyapunov function approach, together with a piecewise analysis method, a sufficient condition is proposed to guarantee the stochastic stability of the underlying systems. As more time‐delay information is used, our results are much less conservative than some existing ones in literature. Finally, two examples are given to show the effectiveness and advantages of the proposed techniques. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, the problems of exponential stability and exponential stabilization for linear singularly perturbed stochastic systems with time‐varying delay are investigated. First, an appropriate Lyapunov functional is introduced to establish an improved delay‐dependent stability criterion. By applying free‐weighting matrix technique and by equivalently eliminating time‐varying delay through the idea of convex combination, a less conservative sufficient condition for exponential stability in mean square is obtained in terms of ε‐dependent linear matrix inequalities (LMIs). It is shown that if this set of LMIs for ε=0 are feasible then the system is exponentially stable in mean square for sufficiently small ε?0. Furthermore, it is shown that if a certain matrix variable in this set of LMIs is chosen to be a special form and the resulting LMIs are feasible for ε=0, then the system is ε‐uniformly exponentially stable for all sufficiently small ε?0. Based on the stability criteria, an ε‐independent state‐feedback controller that stabilizes the system for sufficiently small ε?0 is derived. Finally, numerical examples are presented, which show our results are effective and useful. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The robust stability and robust stabilization for time‐delay discrete singular systems with parameter uncertainties is discussed. A delay‐dependent linear matrix inequality (LMI) condition for the time‐delay discrete systems to be nonsingular and stable is given. Based on this condition and the restricted system equivalent transformation, the delay‐dependent LMI condition is proposed for the time‐delay discrete singular systems to be admissible. With this condition, the problems of robust stability and robust stabilization are solved, and the delay‐dependent LMI conditions are obtained. Numerical examples illustrate the effectiveness of the method given in the paper. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

18.
In this paper, a new method is proposed for stability analysis and synthesis of Takagi–Sugeno (T–S) fuzzy systems with time‐varying delay. Based on a new Lyapunov–Krasovskii functional (LKF), some less conservative delay‐dependent stability criteria are established. In the derivation process, some additional useful terms, ignored in previous methods, are considered and new free‐weighting matrices are introduced to estimate the upper bound of the derivative of LKF for T–S fuzzy systems with time‐varying delay. The proposed stability criterion and stabilization condition are represented in terms of linear matrix inequalities. Numerical examples are given to demonstrate the effectiveness and the benefits of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This paper proposes an improvement to the delay‐dependent stability of discrete systems with time‐varying delays. The approach is based on the observation that the positive definiteness of a chosen Lyapunov–Krasovskii functional does not necessarily require all the involved symmetric matrices to be positive definite, which has been overlooked in the literature. The derived delay‐dependent stability conditions are in terms of linear matrix inequalities. It is theoretically proved that our results are less conservative than the corresponding ones obtained by requiring the positive definiteness of all the symmetric matrices in a chosen Lyapunov–Krasovskii functional. The importance of the present approach is that a great number of delay‐dependent analysis and synthesis results obtained by the aforementioned requirement in the literature can be improved by the present approach without introducing any new decision variables. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
This paper considers mean‐square exponential stability and H control problems for Markovian jump systems (MJSs) with time delays which are time‐varying in an interval and depend on system mode. By exploiting a novel Lyapunov‐Krasovskii functional which takes into account the range of delay, and by making use of some techniques, new delay‐range‐dependent stability result and bounded real lemma for MJSs are obtained, where the introduction of the lower bound of delay is shown to be advantageous for reducing conservatism. Moreover, a sufficient condition for the solvability of the H control problem is derived in terms of linear matrix inequalities. Finally, illustrative examples are presented to show the advantage and effectiveness of the proposed approaches. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号