首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
在湿球磨条件下以600 r/min高能球磨混粉,并将球磨后的粉末经过热压烧结-热挤压成型制备(Mg2B2O5w+ND)/ZK60镁基复合材料。研究了(Mg2B2O5w+ND)/ZK60镁基复合材料在不同载荷和转速下的干摩擦磨损性能。结果表明:干摩擦条件下,材料的摩擦系数随着滑动距离的增加会经历跑和阶段和稳定阶段;材料的质量磨损率随着转速的增大而降低,随着载荷的增大而增大,且基体镁合金的质量磨损率始终低于复合材料。随着摩擦载荷和转速的增加,材料的摩擦系数减小,然后逐渐趋于平稳。混杂增强的镁基复合材料相比基体合金具有更低的摩擦系数。  相似文献   

2.
飞灰颗粒增强铝基复合材料的摩擦与磨损特性   总被引:4,自引:0,他引:4       下载免费PDF全文
对挤压铸造制成的飞灰颗粒增强ZL109复合材料在不同条件下的摩擦磨损特性进行了研究。研究结果表明:在较低载荷和较低滑动速度下,该复合材料的耐磨性明显优越于基体铝合金,摩擦系数也稳定地低于基体铝合金,并且随飞灰含量的增加复合材料的耐磨性有所提高;在较高载荷和较高滑动速度下,同基体铝合金相比复合材料耐磨性的改善程度有所降低,但复合材料的摩擦系数仍可以保持较低的水平。这是由于随着载荷和滑动速度的变化,复合材料的磨损机制发生了转化。本文对该过程中的磨损机制的转化进行了初步分析。  相似文献   

3.
Al2O3·SiO2颗粒增强铝基复合材料的摩擦磨损特性   总被引:12,自引:2,他引:10  
对用挤压铸造法制备出的Al2O3@SiO2颗粒增强铝基复合材料在不同条件下的摩擦磨损特性进行了研究.结果表明:Al2O3@SiO2颗粒的加入可提高复合材料的耐磨性,复合材料同基体铝合金相比摩擦因数也较低.在较低载荷和滑动速度下,该复合材料的耐磨性明显优越于基体铝合金,摩擦因数也稳定地低于基体铝合金;而在较高载荷和滑动速度下,同基体铝合金相比,复合材料耐磨性的改善有所降低,但摩擦因数仍可以保持较低的水平.这是由于随着载荷和滑动速度的变化,复合材料的磨损机制发生了转化.对Al2O3@SiO2颗粒在摩擦磨损过程中所起到的作用进行了分析.  相似文献   

4.
C/ZA-12复合材料的摩擦磨损性能研究   总被引:1,自引:1,他引:0       下载免费PDF全文
本文研究了用挤压铸造法制备的C/ZA-12复合材料的摩擦磨损性能。对碳纤维体积分数和载荷改变时,复合材料的摩擦系数、磨损量的变化规律作了较细致的分析,并对影响其磨损性能的因素进行了讨论。  相似文献   

5.
TIC/7075铝基复合材料的磨损实验研究   总被引:1,自引:0,他引:1  
刘慧敏  宋振东  许萍  张晶 《材料工程》2011,(7):66-69,74
采用原位反应喷射沉积法制备TiC/7075铝基复合材料,并在销一盘式磨损机损上进行摩擦磨损实验研究.通过TEM观察原位TiC颗粒的分布与形貌,并利用SEM观察沉积态组织磨损表面形貌.结果表明:复合材料的耐磨性和TiC颗粒含量及载荷有关,在低载荷(8.9N)状态下,材料的耐磨性随TiC颗粒含量的增加而增强,在高载荷(26...  相似文献   

6.
崔功军  师睿博  李赛  刘慧强  寇子明 《材料导报》2021,35(10):10103-10108
镁合金被广泛应用于航空航天、汽车及军事等领域,但其摩擦学性能对零部件的服役寿命和可靠性具有重大影响.本研究采用往复式球-盘摩擦方式,通过与GCr15钢球配副,研究干摩擦条件下AZ80A、ZK60A和ME20M镁合金在不同滑动速度和载荷条件下的摩擦磨损行为.采用扫描电子显微镜和能谱仪分析镁合金的显微结构及磨损机理.结果表明:当滑动速度超过0.10 m/s时,随着速度的增加,合金的摩擦系数逐渐降低,而磨损率则先减小后增大,其原因在于摩擦热的作用导致摩擦表面形成了氧化物,同时材料表面软化,剪切力降低,使摩擦系数和磨损率不断减小;当滑动速度增加到0.20 m/s时,摩擦表面温度升高,金属软化导致磨损表面金属氧化物剥落,增大了合金的磨损率.随着载荷的增加,合金的摩擦系数和磨损率持续降低.干摩擦条件下镁合金的磨损机理逐渐由磨粒磨损和塑性变形转变为磨粒磨损、氧化磨损、粘着磨损和塑性变形.与ZK60A和ME20M相比,AZ80A镁合金表现出较好的摩擦学性能,这归因于合金的高硬度、β-Mg17 Al12硬质相的支撑作用以及摩擦过程中形成的氧化物.  相似文献   

7.
通过模压成型制备了碳纤维与空心微珠共混改性的聚酰亚胺复合材料, 采用MRH-3型摩擦磨损试验机研究了空心微珠含量、滑动速度及载荷对复合材料摩擦学性能的影响, 并对其磨损形貌及机制进行了分析。结果表明: 空心微珠-碳纤维/聚酰亚胺复合材料摩擦学性能优于其单独填充的聚酰亚胺基复合材料; 空心微珠含量对共混改性的复合材料摩擦系数影响不大, 但其磨损率随着空心微珠含量的增加先减小后增大; 15%空心微珠-10%碳纤维(质量分数)共混增强的复合材料的减摩耐磨性能最佳; 随着滑动速度提高, 空心微珠-碳纤维/聚酰亚胺复合材料的摩擦系数下降, 磨损率增大; 空心微珠-碳纤维/聚酰亚胺复合材料摩擦系数随着载荷增加先下降后上升, 而磨损率则随着载荷增加而增大; 空心微珠-碳纤维/聚酰亚胺的主要磨损机制在较低载荷时为磨粒磨损, 在较高载荷时为粘着磨损和磨粒磨损。  相似文献   

8.
采用超声外场-原位混合盐反应法制备3%TiB_2/2A14(体积分数)铝基复合材料,在往复式摩擦磨损试验机上进行4种不同载荷(20,30,40,50N)的磨损实验,研究不同超声处理工艺制备的复合材料的耐磨性和摩擦行为。使用显微硬度计测量基体和复合材料的显微硬度。采用X射线衍射仪、扫描电子显微镜对测试样品进行物相成分鉴定、显微组织和表面磨损形貌观察,并研究其磨损机理。结果表明:超声能够有效打散颗粒团聚,改善颗粒分布状态,强化颗粒与基体的界面结合强度,因此经过超声处理的复合材料的耐磨性和显微硬度明显优于合金基体。经120s超声处理获得的复合材料,其硬度约为基体合金的2倍。在50N载荷的作用下,其磨损率约为基体合金的57.43%。在干摩擦条件下,基体主要表现为黏着磨损,复合材料表现为黏着磨损+磨粒磨损的混合型磨损,耐磨性能更佳。  相似文献   

9.
肖琪聃  周峰  吴珊 《复合材料学报》2018,35(10):2832-2840
采用无压熔渗反应烧结技术制备了TiC/Ti3SiC2复合材料,通过HST-100型载流摩擦磨损试验机,在60~90 m/s滑动速度范围内,对TiC/Ti3SiC2复合材料的高速载流摩擦磨损性能进行了研究。结果表明:当与HSLA80配副时,TiC/Ti3SiC2的摩擦磨损性能与摩擦速度和TiC含量呈现出一定的相关性。当摩擦速度小于80 m/s时,摩擦表面出现具有减磨作用的熔融状态的均匀分布氧化膜(FeTiO3和Fe2.35Ti0.65O4),呈现山脊及犁沟状形貌,磨损机制以磨粒切削磨损、氧化磨损及粘着磨损为主;当摩擦速度超过80 m/s时,摩擦表面出现不均匀分布的氧化膜,呈现孤峰状形貌,磨损机制以氧化磨损及电弧烧蚀磨损为主。相同实验条件下,摩擦系数随着TiC含量的增加而增大,磨损率随之降低。  相似文献   

10.
通过模压成型制备了碳纤维与空心微珠共混改性的聚酰亚胺复合材料,采用MRH-3型摩擦磨损试验机研究了空心微珠含量、滑动速度及载荷对复合材料摩擦学性能的影响,并对其磨损形貌及机制进行了分析.结果表明:空心微珠-碳纤维/聚酰亚胺复合材料摩擦学性能优于其单独填充的聚酰亚胺基复合材料;空心微珠含量对共混改性的复合材料摩擦系数影响不大,但其磨损率随着空心微珠含量的增加先减小后增大;15%空心微珠-10%碳纤维(质量分数)共混增强的复合材料的减摩耐磨性能最佳;随着滑动速度提高,空心微珠-碳纤维/聚酰亚胺复合材料的摩擦系数下降,磨损率增大;空心微珠-碳纤维/聚酰亚胺复合材料摩擦系数随着载荷增加先下降后上升,而磨损率则随着载荷增加而增大;空心微珠-碳纤维/聚酰亚胺的主要磨损机制在较低载荷时为磨粒磨损,在较高载荷时为粘着磨损和磨粒磨损.  相似文献   

11.
The AZ91 metal matrix composites (MMCs) reinforced with 5, 10 and 15 wt.% TiC particulates are fabricated by TiCp–Al master alloy process combined with mechanical stirring. The effects of TiC particulate content, applied load and wearing time on the sliding wear behaviors of the composites were investigated using MM-200 wear testing apparatus. The results show that the wear resistance and friction coefficient of the composites increased and decreased with increase of the TiC particulate content, respectively. The wear volume loss and friction coefficient of the reinforced composites as well as the unreinforced AZ91 matrix alloy increased with increase of applied load or wearing time, but the increase rates of the reinforced composites in two performance is lower than those of the unreinforced AZ91 matrix alloy. Furthermore, the sliding wear behavior of the composites and the unreinforced AZ91 matrix alloy is characterized by ploughing, adhesion and oxidation abrasion.  相似文献   

12.
TiC reinforced 7075 Al matrix composites have been fabricated by a melt in-situ reaction spray deposition. The microstructures of spray-deposited alloys were studied using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The dry sliding wear behavior of the alloys was investigated using a pin-on-disc machine under four loads, namely 8.9, 17.8, 26.7 and 35.6 N. It has been found that the wear behavior of the alloys was dependent on the TiC content in the microstructure and the applied load. At a lower load (8.9 N), with increasing TiC content, the wear rate of the alloy was decreased. At a higher loads (26.7, 35.6 N), a spray-deposited 7075 Al alloy exhibited superior wear resistance to the 7075/TiC composites.  相似文献   

13.
Dry sliding wears behavior of die cast aluminium alloy composites reinforced with copper-coated short steel fibers were investigated using a pin-on-disk wear-testing machine. The composites were prepared by liquid metal route using vortex method. The weight percentage of copper-coated steel fibers was varied from 2.5 to 10. The density and hardness of the composite increased linearly with increasing wt% of steel fibers. The wear rate decreased by 40% with addition of 10% weight percentage of fibers. A linear dependence of wear rate on fiber content and hardness of MMC is observed. The unreinforced aluminium and composites containing upto 5-wt% of fibers exhibited a sliding distance dependent transition from severe to mild wear. However, composites containing 10-wt% fiber showed only mild wear for all sliding distance. It was also observed that with increase in the fiber content to 10-wt% the coefficient of friction decreased by 22%. The duration of occurrence of the severe wear regime and the wear rate decreased with increasing fiber content. For the composite the wear rate in the mild wear regime decreased with increase in fiber content reaching a minimum. From the analysis of wear data and detail examination of (a) wear surface and (b) wear debris two modes of wear have been identified to be operative, in these materials. These are (i) adhesive wear in the case of unreinforced matrix and in MMC with low wt% (upto 5-wt%) fibers (ii) abrasive wear in case of MMC with high wt% of fibers.  相似文献   

14.
Aluminium–silicon alloys reinforced with low volume fractions of SiC particles were prepared by the compocasting process. The wear behaviour of the unreinforced Al–12Si alloy and metal-matrix composites (MMCs) was investigated by using a block-on-ring test at room temperature under dry conditions. The results showed that the addition of a low volume fraction of SiC particles (2–8 vol%) is a very effective way of increasing the wear resistance of the matrix alloy. Metallographic examinations revealed that the wear zone of the Al–12Si alloy consists of both hardened and deformation layers. The depth of the hardened layer depended on the applied load and was in the vicinity of 10–50 μm. The formation of the hardened layer was related to the alignment and redistribution of fragmented eutectic phase to the surface region during sliding wear. Furthermore, the delamination of debris from the hardened layer was responsible for a higher wear loss observed in the Al–12Si alloy. The thickness of the hardened layer formed on the MMC specimens was reduced considerably by the incorporation of fragmented SiC particles. This layer exhibited higher hardness and wear resistance than that developed in the unreinforced alloy.  相似文献   

15.
Abstract

The sliding wear behaviours of an unreinforced monolithic Al-Si-Cu alloy and SiC particles reinforced composites containing 5, 13, 38 and 50 vol.-% with diameters of 5.5, 11.5 and 57μm were investigated. The results showed that the wear resistance of the composites is much higher than the monolithic alloy, and the larger and the more SiC particles, the higher the enhancement of the wear resistance. Metallographic examinations revealed that the subsurface of worn composites was composed of both fragmented particles and deformed matrix alloy. The depth of the particle fracture zone in the subsurface varied in the range of 20-35 μm at a sliding distance of 1.8 km, while the plastic deformation zone of the worn subsurface on monolithic alloy was more than 100 μm. Scanning electron microanalyses of the worn surface, subsurface microstructure and debris suggested that the depth of the particle fracture zone became smaller as the diameter of SiC particles increased. Increasing the hardness and decreasing the applied wear stress changed the debris morphology from flake to very small lumps.  相似文献   

16.
Al2O3f/ZA27复合材料摩擦磨损性能的研究   总被引:1,自引:0,他引:1  
在ZA27合金中添加不同体积分数的Al2O3短纤维,对其摩擦磨损性能进行了研究。结果表明,Al2O3/ZA27材料的摩擦系数大于ZA27合金,并且纤维体积分数越大,则平均摩擦系数越大。Al2O3f/ZA27材料的耐磨性明显优于ZA27合金,并且与纤维取向有关。  相似文献   

17.
The effect of fibre orientation on the dry sliding wear of continuous B(SiC) fibre reinforced aluminium alloy composites was investigated using a pin-on-disc wear testing machine. The metal-matrix composites (MMC) samples were tested in the normal (N), parallel (P) and antiparallel (AP) orientations sliding against a steel counter disc at a fixed speed of 1 m s–1 under loads of from 12 to 60 N.The results showed that for the matrix alloy and MMCs, the average wear increased linearly with load. Wear of the MMCs was insensitive to fibre content but for composites with fibre contents at or above the minimum of 16 vol% used for this work, the wear rate was about 18% of that of the unreinforced matrix. Fibre orientation had a minor effect on wear rate; the N orientation gave the lowest wear rate with the AP orientation slightly higher and the P orientation significantly higher.The average coefficients of friction of the MMCs in N and AP orientations decreased linearly with increased wear rate and non-linearly with increased load, but the P orientation was insensitive to either variable.It was concluded from these results and a metallographic examination that the mechanism of wear of MMCs was essentially oxidative wear of the matrix. The hard fibres modified this to slightly different degrees depending on their orientation relative to the wear surface and sliding direction.  相似文献   

18.
《Advanced Powder Technology》2021,32(10):3635-3649
Al matrix composites have attracted significant attention of researchers in recent years due to their lightweight, excellent mechanical and tribological properties. In this study, an Al2024 matrix hybrid composite (AMHC) reinforced with both TiC nanoparticles and graphene nanoplatelets (GNPs) was produced via a route of powder metallurgy. And its microstructure, microhardness and tribological properties are compared with those of unreinforced Al2024 alloy matrix and Al2024 matrix composites reinforced with either only TiC or GNPs. It was found that the distribution of Al2Cu, TiC nanoparticles and GNPs in the matrix and the wear resistance are significantly improved when introducing both TiC nanoparticles and the GNPs. The wear mechanisms change from the adhesion-dominant wear for Al2024 and the other singly reinforced composites into abrasive-dominant wear for the hybrid composite. The significantly improved wear resistance of the AMHC is attributed to the synergistic effects of reinforcing and self-lubricating of the TiC and GNPs.  相似文献   

19.
LM13 aluminium alloy (Al−Si12CulMg1) with titanium diboride (TiB2) and boron carbide (B4C) particulate hybrid composites have been prepared using stir casting process. Wt% of titanium diboride is varied from 0–10 and constant 5 wt% boron carbide particles have been used to reinforce LM13 aluminium alloy. Microstructure of the composites has been investigated and mechanical properties viz., hardness, the tensile strength of composites have been analyzed. Wear behavior of samples has been tested using a pin on disc apparatus under varying load (20 N–50 N) for a sliding distance of 2000 m. Fracture and wear on the surface of samples have been investigated. Microstructures of composites show uniform dispersion of particles in LM13 aluminium alloy. Hardness and tensile strength of composites increased with increasing wt % of reinforcements. Dry sliding wear test results reveal that weight loss of composites increased with increasing load and sliding distance. Fracture on the surface of composites reveals that the initiation of crack is at the interface of the matrix and reinforcement whereas dimples are observed for LM13 aluminium alloy. Worn surface of composites shows fine grooves and delamination is observed for the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号