首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 500 毫秒
1.
讨论控制力矩受限情况下,参数不确定的漂浮基柔性空间机械臂系统的智能控制问题。结合系统动量守恒关系和拉格朗日-假设模态法建立系统动力学方程。为了同时实现漂浮基柔性空间机械臂系统载体姿态和关节运动轨迹的渐近跟踪以及系统弹性振动的抑制,基于奇异摄动法将系统分解为快变和慢变两个子系统。针对快变子系统设计二次最优控制方法以抑制柔性臂引起的系统弹性振动,保证系统的稳定性;针对慢变子系统提出一种鲁棒自适应混合控制方法。该方法利用连续可导递增函数来限制控制力矩的幅值大小,使控制更符合空间实际要求;利用鲁棒自适应调节器来克服系统不确定参数的影响,保证系统的控制精度。计算机仿真结果证明了所提出方法的有效性。  相似文献   

2.
讨论了漂浮基柔性空间机械臂基于状态观测器的鲁棒控制及振动最优控制问题。首先通过合理选择联体坐标系,实现两柔性杆弹性变形之间的解耦;根据拉格朗日方程与动量守恒原理,建立了载体位置无控、姿态受控飘浮基两杆柔性空间机械臂系统的动力学方程。接着利用奇异摄动法,将这个柔性两杆空间机械臂系统分解为一个慢变子系统与一个快变子系统。以此为基础,提出了一个包含慢变控制项与快变控制项的复合控制器。利用动态滑模观测器得到慢变子系统的观测速度矢量,基于这个观测速度矢量设计系统的鲁棒慢变控制律来实现载体姿态、关节轨迹的跟踪。利用线性观测器得到快变子系统的观测速度矢量,基于这个观测速度矢量与线性系统的最优控制理论设计系统的快变控制力矩,实现两柔性杆振动的抑制。最后通过系统的数值仿真,证实了方法的有效性。  相似文献   

3.
讨论了全柔性杆空间机械臂系统动力学、运动L_2增益抗扰鲁棒反演控制。结合拉格朗日方法、动量守恒关系和假设模态法对系统进行动力学分析,获得了系统的动力学方程。基于系统双时标模型,采用奇异摄动法,将系统降阶分解为两个子系统:描述关节刚性运动的慢变子系统,描述柔性杆振动的快变子系统。为慢变子系统设计了对外部有界干扰具有抑制作用的鲁棒反演控制器,使外部有界干扰对系统性能输出的L_2增益小于给定值;基于线性系统最优控制理论实现了快变子系统的控制,以抑制由臂杆柔性引起的振动。数值仿真说明了所设计混合控制器的可行性和有效性。  相似文献   

4.
讨论受到外部干扰影响的参数不确定的漂浮基柔性关节、柔性臂空间机器人系统的动力学建模过程、运动控制律设计和关节、臂双重柔性振动的主动抑制问题。利用动量、动量矩守恒关系和拉格朗日-假设模态法建立系统动力学方程。基于奇异摄动法,将系统分解为相互独立的三个子系统:慢变子系统、快变子系统1和快变子系统2。针对慢变子系统提出一种饱和鲁棒模糊滑模控制律来补偿不确定参数、柔性关节引起的转角误差以及外部干扰的影响,从而实现系统期望运动轨迹的渐近跟踪。饱和函数的运用可减弱滑模控制自身的抖振;针对快变子系统1设计一种速度差值反馈控制器来抑制柔性关节引起的系统柔性振动;针对快变子系统2采用线性二次型最优控制器来抑制柔性臂引起的系统柔性振动。仿真试验证明所提出的混合控制律的有效性。  相似文献   

5.
柔性空间机械臂振动抑制的模糊终端滑模控制   总被引:1,自引:0,他引:1  
针对载体位置不受控、姿态受控的情况,提出了柔性空间机械臂振动抑制的模糊终端滑模控制方案。利用假设模态法、系统动量守恒关系及拉格朗日方法,导出了柔性空间机械臂的系统动力学方程。为解决柔性空间机械臂轨迹跟踪控制及振动抑制问题,运用奇异摄动法将系统分解为慢变、快变两个子系统并分别设计了控制器。慢变子系统采用具有较强鲁棒性的模糊终端滑模控制方案,快变子系统则采用基于降阶状态观测器的线性二次型最优控制器(linear quadratic regulator,简称LQR)。数值模拟结果表明,本文的控制方案不仅保证了柔性空间机械臂载体姿态及机械臂各关节铰跟踪误差在有限时间内的收敛性,而且还大大地降低了滑模控制所固有的抖振,并对柔性臂的振动具有良好的抑制效果。  相似文献   

6.
《机械科学与技术》2017,(7):1005-1010
采用线性伸缩弹簧、线性扭转弹簧来分别描述基座及关节柔性,并在此基础上经由线动量守恒原理、拉格朗日第二类建模方法,建立了姿态受控柔性基、柔性关节空间机械臂的动力学模型。将柔性补偿思想与奇异摄动理论相融合,推导了可分别表示系统刚性运动、基座与关节柔性运动的慢、快变子系统,并提出一种由协调运动慢变控制和基于高阶快变状态观测器的最优控制所组成的改进奇异摄动控制方案。与传统奇异摄动控制方案相比,所提改进控制方案可有效避免对系统高阶快变状态量进行实时地测量和反馈,且可适于具有较大关节柔性的柔性基、柔性关节空间机械臂的控制。仿真实验结果表明了所提方案在轨迹跟踪控制、基座与关节柔性振动抑制上的有效性。  相似文献   

7.
讨论了存在外界干扰情况下漂浮基柔性空间机械臂的轨迹跟踪和振动抑制问题。结合系统动量守恒关系和拉格朗日方法建立了系统动力学模型。采用奇异摄动法的双时标分解方法,将系统分解描述为关节轨迹跟踪的慢变子系统与描述柔性杆件振动的快变子系统。针对慢变子系统,设计了自适应模糊H_∞控制算法,用模糊逻辑系统去逼近系统的不确定项;同时,设计了H_∞鲁棒控制项,用它克服模糊逼近误差和外界干扰对输出跟踪误差的影响。针对快变子系统,采用线性二次最优控制方法主动抑制,以保证系统的稳定性。基于Lyapunov稳定性理论证明了该算法可确保控制系统是渐近稳定的。系统仿真结果说明了控制器的可靠性和有效性,所设计的控制方案使得系统的跟踪误差及柔性振动快速收敛。  相似文献   

8.
针对液压柔性机械臂的等效动力学模型——柔性负载电液位置伺服系统,提出了滑模控制和自适应反演控制相结合的鲁棒控制器设计方法。基于Lyapunov稳定性理论的系统稳定性分析,证明系统跟踪误差将收敛至零,同时控制了柔性负载的振动。仿真实例表明了设计方法的正确性。  相似文献   

9.
讨论了载体位置不受控、姿态受控的情况下,漂浮基柔性空间机械臂关节运动及柔性振动主动抑制的控制问题。由系统动量守恒关系及假设模态法,利用拉格朗日方法建立了柔性空间机械臂的系统动力学方程,之后采用奇异摄动理论,将其分解为表示刚性运动的慢变子系统和柔性振动的快变子系统。以此为基础,针对慢变子系统———柔性空间机械臂的刚性运动,设计了系统参数未知情况下的双环积分滑模控制方案,以控制柔性空间机械臂的载体姿态及机械臂关节铰协调地完成各自在关节空间的期望运动;而对于快变子系统———柔性臂的振动,则设计了分级模糊控制方案来主动抑制柔性杆的振动。计算机数值仿真证实了该方法的可靠性和有效性。  相似文献   

10.
谢立敏  陈力 《中国机械工程》2013,24(19):2657-2663
讨论了漂浮基柔性关节-柔性臂空间机器人系统的动力学建模过程、运动控制律设计及关节和臂双重弹性振动的抑制问题。利用动量、动量矩守恒关系和拉格朗日-假设模态法对系统进行动力学分析,并建立系统动力学方程。基于奇异摄动法,将系统分解为三个相互独立的子系统:仅表示系统刚性运动的“刚性关节-刚性臂”慢变子系统、仅表示柔性关节引起的系统弹性振动的“柔性关节-刚性臂”快变子系统和仅表示柔性臂引起的系统弹性振动的“刚性关节-柔性臂”快变子系统。分别针对三个子系统设计适当的控制律,其中非线性滑模控制方法用来实现空间机器人期望运动轨迹的渐近跟踪,速度差值反馈控制器用来抑制柔性关节引起的系统弹性振动,线性二次型最优控制器用来抑制柔性臂引起的系统弹性振动。因此,系统的总控制律为三个子系统的控制律组成的混合控制律。仿真实验证明所提出的混合控制律能够保证系统的控制精度,且能够有效地抑制柔性关节和柔性臂引起的系统弹性振动。  相似文献   

11.
为了提高柔性机械臂控制精度、抑制柔性机械臂末端振动,提出了区分快慢变子系统的组合控制方法。使用拉格朗日方程和假设模态法建立了柔性机械臂动力学方程,利用奇异摄动原理将柔性机械臂系统分解为快变子系统和慢变子系统;鉴于慢变子系统的强非线性和参数不确定性,将反演控制和滑膜变结构相结合,提出了基于反演滑模变结构控制方法的慢变子系统控制;鉴于快变子系统模型不准确问题,而模糊控制对模型精度没有要求,因此设计了快变子系统模糊控制器。经仿真验证可以看出,与传统PID控制相比,机械臂转角最大误差由4.1°下降为0.04°,稳定时间由10s下降为2.5s,末端振动最大值由0.081m下降为0.021m,极大地提高了柔性机械臂控制精度。  相似文献   

12.
A time-varying sliding-coefficient-based decoupled terminal sliding mode control strategy is presented for a class of fourth-order systems. First, the fourth-order system is decoupled into two second-order subsystems. The sliding surface of each subsystem was designed by utilizing time-varying coefficients. Then, the control target of one subsystem to another subsystem was embedded. Thereafter, a terminal sliding mode control method was utilized to make both subsystems converge to their equilibrium points in finite time. The simulation results on the inverted pendulum system demonstrate that the proposed method exhibits a considerable improvement in terms of a faster dynamic response and lower IAE and ITAE values as compared with the existing decoupled control methods.  相似文献   

13.
探讨了存在关节力矩输出死区情况下,基于有限时间的漂浮基双柔杆空间机器人系统的轨迹跟踪与柔性抑振问题。采用奇异摄动理论,将系统的动力学方程分解为慢变与快变子系统,分别表示刚性运动与柔性振动。针对模型存在不确定性和死区参数未知的慢变子系统,设计了死区预补偿器和一种基于名义模型的有限时间控制器。引入了具有有限时间收敛特性的积分式滑模面,它与传统渐近收敛控制方法相比,具有更快的收敛速度、更好的鲁棒性和抗干扰特性。对于快变子系统,采用线性二次最优控制方法主动抑制其振动,以保证系统良好的稳定性。结合有限时间稳定性引理,采用李雅普诺夫理论证明了所提控制算法能使跟踪误差在有限时间内收敛到原点。仿真算例验证了所提方法的有效性。  相似文献   

14.
A control method based on global fast dynamic terminal sliding mode control (TSMC) technique is proposed to design the flight controller for performing the finite-time position and attitude tracking control of a small quadrotor UAV. Firstly, the dynamic model of the quadrotor is divided into two subsystems, i.e., a fully actuated subsystem and an underactuated subsystem. Secondly, the dynamic flight controllers of the quadrotor are formulated based on global fast dynamic TSMC, which is able to guarantee that the position and velocity tracking errors of all system state variables converge to zero in finite-time. Moreover, the global fast dynamic TSMC is also able to eliminate the chattering phenomenon caused by the switching control action and realize the high precision performance. In addition, the stabilities of two subsystems are demonstrated by Lyapunov theory, respectively. Lastly, the simulation results are given to illustrate the effectiveness and robustness of the proposed control method in the presence of external disturbances.  相似文献   

15.
讨论了载体位置、姿态均不受控的飘浮基柔性空间机器人的Terminal滑模控制问题。为讨论既有柔性关节又有柔性臂的欠驱动系统,以一个具有两个柔性关节和一个柔性臂的飘浮基空间机器人为例,首先利用拉格朗日方程并结合系统总质心定义,得到了系统的动力学方程,然后利用奇异摄动法,将柔性空间机器人系统分解为一个柔性空间机械臂子系统和一个柔性关节快变子系统。以此为基础,提出了一种包含柔性空间机械臂子控制项和柔性关节快变子控制项的组合控制器。其中,柔性空间机械臂Terminal滑模子控制项实现了机械臂关节铰期望轨迹的跟踪,柔性关节快变子控制项使得快变子系统稳定在由柔性空间机械臂子控制项产生的机械臂关节轨迹上。系统的数值仿真结果表明,该方法能在抑制柔性关节的柔性振动的同时跟踪上机械臂关节期望轨迹。该控制方案的显著优点为不需要测量、反馈载体的位置、移动速度、移动加速度,同时可保证机械臂关节铰跟踪误差在任意指定有限时间内收敛到零。  相似文献   

16.
This paper deals with the robust asymptotic stabilization for a class of nonlinear singularly perturbed systems using the fuzzy sliding mode control technique. In the proposed approach the original system is decomposed into two subsystems as slow and fast models by the singularly perturbed method. The composite fuzzy sliding mode controller is designed for stabilizing the full order system by combining separately designed slow and fast fuzzy sliding mode controllers. The two-time scale design approach minimizes the effect of boundary layer system on the full order system. A stability analysis allows us to provide sufficient conditions for the asymptotic stability of the full order closed-loop system. The simulation results show improved system performance of the proposed controller as compared to existing methods. The experimentation results validate the effectiveness of the proposed controller.  相似文献   

17.
In this paper, the problem of fault-tolerant control (FTC) for spacecraft attitude stabilization system with actuator fault and mismatched disturbance is investigated. A novel fault tolerant control strategy based on adaptive fast terminal sliding mode control (AFTSMC) is proposed. Firstly, a novel composite observer is proposed to estimate the disturbance, actuator efficiency factor and partial states of the system. By introducing a sliding mode observer, the bias actuator fault is reconstructed. Subsequently, in accordance with the estimated information, a novel sliding mode fault tolerant controller is designed. The proposed control scheme contains two compensators and two adaptive parameters to attenuate the mismatched disturbance, to compensate actuator fault, and to guarantee fast convergence of the system. Furthermore, the reachability of sliding motion is proved. The simulation results for the spacecraft system illustrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号