首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
断续节理对岩体强度的影响及其评价方法一直是岩体力学领域研究的热点和难点。采用石膏制作含有不同节理倾角、密度及连通率组合的断续节理岩体试样,共计45组,每组试样先后开展超声波波速测试和单轴压缩试验,分析试样力学参数和声学参数间的关联特性,探索节理分布特征对岩体破坏模式及单轴抗压强度的影响,最终提出断续节理岩体单轴抗压强度的取值方法。结果表明,纵波波速与节理连通率呈正相关,随节理倾角增大近似"V"型先减后增;单轴抗压强度和弹性模量随节理连通率的增大而增大;单轴抗压强度随节理倾角的增大近似"U"型先减后增;总结提出了断续节理岩体的4种破坏模式,并认为节理与加载方向成45°夹角时最易破坏;最终提出了基于岩体及岩石纵波波速、岩石内摩擦角、节理倾角的岩体单轴抗压强度与岩石单轴抗压强度之间的拟合关系。  相似文献   

2.
圆孔作为一种典型的岩石缺陷,对岩石的力学特性具有重要影响。采用室内试验及PFC2D程序,构建含双圆孔类岩石试样并对其进行单轴压缩试验,研究其不同圆孔间距、倾角组合条件下的强度、裂纹模式及破裂孕育演化特征。研究表明:(1)当间距不变时,随倾角的增大,试样单轴抗压强度呈先减小后增大的趋势,且在倾角为45°~60°时达到最低单轴抗压强度;当倾角为90°恒定时,随间距的增大,试样单轴抗压强度呈先增大后减小的趋势,且在间距为40 mm左右时达到最大单轴抗压强度。(2)试样产生的裂纹类型可分为I型(张拉型)裂纹、II型(剪切型)裂纹、III型(混合型)裂纹等三类。当孔距较近时,随倾角的增大,圆孔间裂纹类型逐渐由III型裂纹转变为II型裂纹,两圆孔靠近加载端部一侧的孔壁逐渐产生I型裂纹,靠近试样两侧边界处的孔壁始终会产生II型裂纹。当倾角为90°恒定时,随间距的增大,两孔间相互作用减弱,但两圆孔靠近加载端部一侧及靠近试样两侧边界处的孔壁,始终分别产生I型裂纹和II型裂纹。(3)两孔间岩桥连线上的II型裂纹首先产生,其次在圆孔靠近加载端部一侧的孔壁产生I型裂纹,最后在圆孔靠近试样两侧边界处的孔壁产生II型裂纹。通常构成II型裂纹的声发射事件破裂强度,高于构成I型裂纹的声发射事件破裂强度。  相似文献   

3.
为研究裂隙岩体在水–力共同作用下的强度变形特征和裂纹扩展规律,使用高强石膏采用预埋薄片法制作含不同角度裂隙的类岩石试样,在围压6 MPa下,分别施加1,3,5 MPa水压,对完整及含不同角度裂隙的试样进行三轴试验,分析力学特性和破坏形态,揭示裂隙岩体在水–力共同作用下的破坏规律。试验表明,含裂隙试样随着水压的增大由延性破坏向脆性破坏转变,三轴压缩强度、峰后残余强度和弹性模量均随水压增大而减小,随裂纹倾角增大而先减小后增大,且水压对含裂隙试样力学特性的削弱程度受预制裂纹倾角的影响。完整试样破坏断裂角随水压增大而增大,并由剪切破坏向劈裂破坏转化。含裂隙试样的破坏形态主要为剪切破坏,当预制裂纹倾角较小时,含裂隙试样破坏形态受水压影响显著,高水压下试样呈"X"型破坏;当预制裂纹倾角较大时破裂面呈单一倾斜面,且角度基本与预制裂纹倾角一致。  相似文献   

4.
节理岩体的力学特性直接影响工程岩体的安全。为了研究节理岩体的各向异性力学特性和破坏特征,设计进行了0°,30°,45°,60°,75°和90°等6种角度断续节理砂岩的三轴压缩试验,详细分析了节理倾角对断续节理岩体变形强度特征和破坏模式的影响。研究结果表明:①在加载过程中,随着围压增大,断续节理砂岩应力–应变曲线的屈服阶段逐渐明显,峰值强度和残余强度逐渐提高,破坏时延性特征逐渐明显;②随着节理倾角增大,断续节理砂岩的变形模量、抗压强度、黏聚力和内摩擦角等力学参数均呈现先减小后增大的U型变化趋势;③节理对岩样破坏裂纹的形成与开展具有明显的诱导和控制作用,不同倾角岩样的破裂面均顺节理倾角方向发展,当节理倾角与岩样计算破坏角接近的时候,岩样的破裂面顺节理面开展,变形和强度参数达到极小值;④随着围压增大,不同倾角断续节理岩样的变形和强度参数差别逐渐减小,各向异性特征逐渐减弱;⑤断续节理砂岩的破坏模式可分为张拉破坏、折线型的复合剪张破坏、沿节理面剪切破坏等3种类型,节理倾角的分布决定了断续节理砂岩在加载作用下的变形破坏模式,变形破坏模式的差异决定了断续节理砂岩变形和强度参数的各向异性特征。研究成果可为工程中节理岩体的各向异性特征分析提供较好的参考。  相似文献   

5.
 利用含一组张开预置裂隙石膏试件的单轴压缩试验,系统地研究节理组的产状和节理连通率的连续变化对张开断续节理岩体单轴压缩强度和弹性模量及应力–应变曲线的影响。试验研究发现:(1) 随着节理连通率的增大,应力–应变曲线的延性增强,由单峰曲线变为多峰曲线;(2) 在节理倾角不变时,随着节理连通率的增大,岩体的峰值强度和弹性模量都逐渐降低,且二者变化规律不完全相同,可采用不同幂函数的倒数来表示,其系数与节理倾角有关;(3) 当节理连通率不是很大时,岩体的峰值强度和弹性模量随节理倾角的变化规律大致相同,节理倾角为90°时岩体峰值强度和弹性模量最高,节理倾角为30°和60°时岩体的峰值强度和弹性模量最低,出现2个极小值。当节理连通率较大时,节理倾角为90°时岩体的峰值强度和弹性模量最高,节理倾角为45°时岩体的峰值强度最低,节理倾角为0°~60°时岩体的弹性模量都很低。对试件破坏过程的进一步分析表明,上述岩体宏观力学特性随节理倾角和连通率的变化规律,与预制节理的闭合摩擦、岩桥内拉伸和剪切裂纹产生及与预制节理组合形成宏观组合破坏面等细观损伤力学机制密切相关。  相似文献   

6.
深部单裂隙岩体结构面效应的三轴试验研究与力学分析   总被引:2,自引:1,他引:1  
 通过在类岩石材料中人工预制单裂隙,以常规三轴压缩试验为手段,研究深部单裂隙岩体的强度特征及破坏特性;用断裂力学原理分析单裂隙岩体沿结构面剪切破坏的影响因素,探讨裂隙岩体沿结构面滑动破坏的条件。研究结果表明:(1) 单裂隙试样强度不仅具有明显围压效应,而且与裂隙倾角和尺寸关系密切;(2) 裂隙是试件损伤的外在集中表现,裂隙试样的弹性模量和变形模量与围压、倾角及尺寸相关,裂隙尺寸对模量的影响最大,随着尺寸增加模量显著下降,而围压和倾角对模量的影响较轻微;(3) 预制单裂隙试样的破坏形式既有沿结构面的滑动剪切破坏,也有试样自身的剪切破坏,而当裂隙尺寸较小时,还将产生裂隙重置后沿新结构面的剪切破坏;(4) 单裂隙试样在理想II型剪切破坏时,断裂力学理论与莫尔–库仑强度准则达到较好统一;(5) 单裂隙试样沿结构面滑动破坏不仅取决于结构面倾角,而且与裂隙尺寸及围压大小关系密切,裂隙倾角适当,尺寸较小,围压较高时,试样才能产生沿结构面的滑动破坏,尺寸较大时,沿结构面滑动破坏对围压不敏感;(6) 单裂隙三轴压缩试验中,既有I和II型裂纹产生,也有III型裂纹的扩展。研究成果能为含裂隙或断层的地下工程开挖、支护设计及其稳定性分析提供理论参考。  相似文献   

7.
节理岩体的力学特性直接影响工程岩体的安全。为了研究节理岩体的各向异性力学特性和破坏特征,设计进行了0°,30°,45°,60°,75°和90°等6种角度断续节理砂岩的三轴压缩试验,详细分析了节理倾角对断续节理岩体变形强度特征和破坏模式的影响。研究结果表明:①在加载过程中,随着围压增大,断续节理砂岩应力-应变曲线的屈服阶段逐渐明显,峰值强度和残余强度逐渐提高,破坏时延性特征逐渐明显;②随着节理倾角增大,断续节理砂岩的变形模量、抗压强度、黏聚力和内摩擦角等力学参数均呈现先减小后增大的U型变化趋势;③节理对岩样破坏裂纹的形成与开展具有明显的诱导和控制作用,不同倾角岩样的破裂面均顺节理倾角方向发展,当节理倾角与岩样计算破坏角接近的时候,岩样的破裂面顺节理面开展,变形和强度参数达到极小值;④随着围压增大,不同倾角断续节理岩样的变形和强度参数差别逐渐减小,各向异性特征逐渐减弱;⑤断续节理砂岩的破坏模式可分为张拉破坏、折线型的复合剪张破坏、沿节理面剪切破坏等3种类型,节理倾角的分布决定了断续节理砂岩在加载作用下的变形破坏模式,变形破坏模式的差异决定了断续节理砂岩变形和强度参数的各向异性特征。研究成果可为工程中节理岩体的各向异性特征分析提供较好的参考。  相似文献   

8.
非贯通节理复杂的起裂机制与破坏模式对岩体力学行为有着重要的影响。考虑节理倾角与贯通度的影响,基于花岗岩试样单轴压缩试验,分析非贯通节理对岩体力学特性及断裂特征的影响,结合三维离散元数值模型,从细观尺度研究裂纹起裂、贯通破坏过程与岩体宏观破坏的相关性,并建立含非贯通节理的断裂力学理论模型,引入应力强度因子一般表达式,分析非贯通节理的断裂韧性,量化节理倾角与贯通度对岩体抗脆断能力的影响。结果表明:非贯通节理对岩体造成的劣化效应显著,随着倾角的增加,节理岩体强度增加。根据裂纹形态与形成机制,区分了6种裂纹,发现节理试样的起裂破坏模式对强度特征影响显著。15°~75°范围内,试样的断裂韧度随节理倾角的增大有不断增大的趋势,其中,15°节理试样抗脆断能力最弱;随节理贯通度的增大,节理岩体的断裂韧性近似双曲线趋势减小。  相似文献   

9.
节理产状对岩石单轴抗压强度的影响研究   总被引:1,自引:0,他引:1  
运用岩石破坏过程分析RFPA2D系统,采用控制变量法,分别研究了节理不同位置、方向和迹长对于岩石试件单轴抗压强度的影响。结果表明:试件节理位置对应值(裂纹尖端到受压面的距离)与抗压强度值有近似的线性关系;岩石试件中所含节理倾角不同时,试件的破坏模式不同,随着倾角的增大,试件的强度先降低随后增大;随着节理迹长与试件直径比值的增大,试件强度随之减小。数值模拟结果同物理试验结果相吻合,研究结果对于深入揭示断续节理岩石在单轴压缩下损伤破坏机制具有重要参考价值。  相似文献   

10.
断续节理岩体强度与破坏特征的数值模拟研究   总被引:1,自引:0,他引:1  
基于细观统计损伤数值模型,通过改变包含单组节理岩体的节理倾角、节理台阶角、层距d和岩桥长度lr,建立不同节理分布的断续节理岩体数值试样,展开系列数值试验,模拟了节理岩体的破坏过程,探讨了节理结构几何参数和应力水平对破坏模式以及岩体力学参数的影响规律。研究结果表明,断续节理岩体破坏模式共分为4种:沿节理面破坏、转动块体破坏、台阶状破坏和混合破坏。沿节理面破坏与台阶状破坏的岩体峰值强度高、破坏应变大,转动破坏的岩体峰值强度低、破坏应变小。随着节理倾角的增大,岩体力学行为表现出脆性破坏—渐进破坏—脆性破坏的循环过程。随着应力水平的增加,岩体破坏区域由中间向端部扩展,并且对于强度的提高有显著作用,但提高水平随围压增加而降低。节理台阶角对于=90°时的破坏形式影响较大,由台阶状破坏转变为转动块体破坏,层距d对阶梯状破坏模式影响较小,对转动破坏模式影响较大,岩桥长度lr不影响破坏模式,但对面破坏与台阶状破坏模式的峰值强度、破坏应变影响较大。通过对比,模拟结果与物理试验规律一致,但数值模拟结果可以清晰获得节理岩体中应力场分布、裂纹起裂点与扩展方向、破坏图像等,有利于分析其内在破坏规律与机理。  相似文献   

11.
 针对节理岩体开挖卸荷所产生的各向异性力学难题,通过制作不同倾角单一预制节理试件,开展节理岩体三轴卸荷试验,研究卸荷条件下节理岩体的应力–应变关系、变形特征、强度特征和破坏模式。得到如下结论:(1) 进入卸荷阶段之后,0°,30°和90°倾角节理试件的应力–应变曲线依次出现屈服、软化和残余变形阶段,而45°和60°倾角节理试件只出现屈服阶段。(2) 节理试件的变形模量随节理倾角呈U型变化,其中,60°倾角节理试件的变形模量最小;随着围压升高,不同倾角节理试件之间的变形特性差异逐渐减小。(3) 0°,30°和90°倾角节理试件的抗压强度降低,而45°和60°倾角节理试件几乎未降低;节理试件的黏聚力随节理倾角呈U型变化,其中,60°倾角节理试件仍为最小;而内摩擦角随节理倾角增大而增大。(4) 0°,30°和90°倾角节理试件的破坏模式均为穿越节理的压剪破坏,且不受节理影响,而45°和60°倾角节理试件的破坏模式均为沿节理面滑动破坏。(5) 揭示节理岩体的卸荷力学特性分为受岩块强度控制和节理面强度控制。  相似文献   

12.
将由室内试验资料提取的无胶结厚度含抗转动能力的岩石微观力学模型植入离散元软件,模拟非共面非贯通节理岩体的直剪试验,分析预制节理倾角、法向应力和节理间距对岩体力学特性和贯通模式的影响,并揭示相应的宏微观机制。结果表明:非贯通非共面节理岩体试样的破坏由节理端点处因拉应力导致的翼裂纹开始,随着剪切位移的增加,翼裂纹朝着最大压力方向扩展,并最终贯通岩桥;峰值剪切应力大体随着预制节理倾角的增加而增加,随着法向应力的增加而增加,随着节理间距的增加基本保持不变。  相似文献   

13.
基于颗粒离散元理论,研究含2条预制裂纹的Hwangdeung花岗岩在双轴压缩试验下的裂纹扩展及破坏模式。研究结果表明:围压对岩石裂纹扩展及破坏模式有显著影响;水平预制裂纹对倾斜预制裂纹的保护作用随着围压的增大而增强;且倾角越大,水平预制裂纹的保护作用越明显;当预制裂纹倾角α≤75°时,试验停止时微裂纹数目随围压的增加而增大;而当预制裂纹倾角α=90°时,微裂纹数目先增大后减小;试样的起裂应力都随着围压的增加而增大(除α=75°);试样的峰值强度也均随着围压的增大而增大;预制裂纹倾角不同,围压对试样的起裂应力和峰值强度的影响程度不同;相同围压下,不同预制裂纹倾角试样的起裂应力和峰值强度的大小关系无明显规律,而与其具体破坏模式有关;整体来看,当预制裂纹倾角α=60°时,围压对岩体力学特性影响最大。  相似文献   

14.
为研究节理岩体疲劳荷载条件下累积损伤宏细观力学特征及破坏机制,开展节理砂岩不同上限应力比循环加卸载试验。试验结果表明:(1)随上限应力比增加,节理砂岩滞回圈间距由“疏–密”两阶段转化为“疏–密–疏”三阶段的变化规律。(2)当上限应力比小于0.90时,循环加卸载后节理砂岩单轴抗压强度均有不同程度增高,且随上限应力比增加而呈现先增大后减小趋势,当上限应力比为0.80时,单轴抗压强度最大;当上限应力比≥0.90时,节理砂岩在循环过程中发生破坏,且随上限应力比增加疲劳次数减小。(3)不同倾角砂岩破坏时经历的疲劳次数呈90°>60°>0°>45°规律;通过对比分析循环加卸载后节理砂岩破坏模式,发现不同上限应力比主要影响试样破坏程度,上限应力比越高,破碎程度越大;节理倾角主要影响试样破坏模式,60°和45°节理砂岩试样以剪切破坏为主,90°和0°节理砂岩试样以张拉破坏为主。(4)采用核磁共振(NMR)以及扫描电镜(SEM)测试循环加卸载疲劳损伤后节理砂岩孔隙变化情况以及细观结构特征,发现试样疲劳破坏可分为以“间隙压密填充–黏土矿物破碎–骨架矿物破碎”为主要特征的“减速疲劳–稳定疲...  相似文献   

15.
在提出一种改进的包含节理间距的柱状节理模型的基础上,针对节理间距、节理倾角、围压三者联合作用对柱状节理岩体应力–应变曲线、岩体强度的影响进行了深入的研究。研究结果表明:(1)节理间距增大至一定程度时,其岩体强度等于岩块强度;节理间距减小至一定程度时,其岩体强度等于遍布节理强度;(2)节理间距对岩体应力–应变曲线的3个阶段均有较大影响,弹性变形、屈服强度和残余强度,均随着节理间距的增大而增大;(3)当围压增高时,节理间距导致的岩体劣化特征减弱,到达岩块强度和遍布节理强度的节理间距均减小;(4)当某一节理面倾角小于45°-φ/2或者大于45°-φ/2时,岩体不沿节理面破坏,即使改变节理面间距,其强度也不发生变化;而当节理面倾角大于45°-φ/2小于45°-φ/2时,岩体沿节理面发生破坏,并且随着节理面间距的增大,强度增大;(5)一类柱状节理可以按照遍布节理模型来考虑,但是二类、三类柱状节理由于节理间距较大不能按照遍布节理来考虑,而应采用本文所提出的包含节理间距的柱状节理模型。  相似文献   

16.
 岩石在荷载作用下产生宏观破坏,其断裂面的细观形态变化,可以间接地反映岩石内部损伤演化进程,并与其宏观力学状态和结构破坏特性之间存在必然联系。主要对巴西劈裂试验和剪切试验试样的断裂面进行电镜扫描,总结典型力学特征下试样断裂面的细观形貌特征,建立裂纹断裂面细观形貌与宏观力学特性匹配的判断标准。进而对含不同倾角预制单裂纹试样单轴压缩试样的破坏全断面进行细观扫描分析,采用判断标准对其细观形貌判别,得到断裂面的拉剪应力分布权重,探究断裂面拉、剪应力分布随裂纹扩展过程的变化规律。试验结果表明:全断面拉剪应力权重与预制裂纹倾角有密切关系。预制裂纹倾角小于45°时,断裂面以拉应力为主,且随着裂纹扩展拉应力权重逐渐减小,剪应力权重逐渐增大;当裂纹倾角大于45°时,其结论与前述结论相反;预制裂纹倾角为45°时,拉、剪应力共同作用产生翼裂纹及次生裂纹2种扩展方式,翼裂纹扩展由拉应力主导向剪切应力主导过渡,次生裂纹扩展过程中主导应力变化规律与之相反。  相似文献   

17.
利用颗粒流软件中平行粘结方式建立数值计算模型,通过校核室内试验数据确定数值模型的细观参数值,并采用smooth-joint在模型中设置两条断续节理,通过改变岩桥倾角和节理倾角,建立不同节理布置数值模型。从细观和宏观两方面,研究单轴压缩荷载下节理试样内接触力、微裂隙数量和节理岩体的破坏行为发现,峰值轴向应力之前,微裂隙数量增加缓慢,峰值轴向应力之后,微裂隙数量迅速增加;颗粒接触力易在节理端部和岩桥处聚集,在节理中间段附近分布较为稀疏,接触力较大的位置易产生裂纹;峰值轴向应力时刻,岩桥倾角为15°时,岩桥均未贯通,岩桥倾角为45°和75°时,绝大部分试样的岩桥贯通了,节理倾角为90°时,岩桥全部没有贯通。  相似文献   

18.
非贯通节理岩体边坡稳定性及破坏规律的数值分析   总被引:1,自引:0,他引:1  
非贯通节理普遍存在于岩体边坡中,并对边坡的稳定性产生较大影响。利用数值分析软件Optum G2建立2类含非贯通节理岩体边坡的稳定性分析模型,采用shear joint单元模拟非贯通节理,基于有限元强度折减法得到不同节理(组)倾角、节理长度和岩桥长度下边坡的稳定系数F及破坏规律。研究结果表明,第一类模型中,随节理倾角α的增大,F先减小,再增大,最后基本保持不变。节理倾角等于边坡倾角时(α=60°),F有最小值,且节理长度越大,最小值越小,此时破坏面为由非贯通节理向坡脚发育的近圆弧状破坏面,而在其它倾角方向则影响较小;第二类模型中,随节理组倾角θ的增大,F先急剧减小(θ=30°时为最小值),再缓慢增大,最后缓慢降低。岩桥长度越小,F越小,在θ=30°时最为显著。此时破坏面呈不规则状,节理裂隙扩展路径由重力作用从上往下发展,并由一非贯通节理端部向相邻节理端部直线发展,当岩桥长度较小时,节理裂隙扩展路径更为复杂和密集。  相似文献   

19.
 为定量地研究节理岩体的损伤演化规律,对岩体石膏模型试件单轴压缩试验过程中拍摄的表面数字图像进行处理分析。编制Matlab程序,实现单个裂纹的识别、裂纹长度和方位角、总裂纹面积分数和总裂纹分形维数的计算。对节理倾角和节理连通率这2个参数组合变化下的试件表面裂纹图像的分析结果为:(1) 试件表面总裂纹面积分数和总裂纹分形维数变化规律基本相似,在各节理连通率和各节理倾角下,2个参量都随轴向应变的增加而增大;(2) 可将试件分为两大组,节理倾角为0°,15°,75°,90°试件(劈裂破坏为主)和节理倾角为30°,45°,60°的试件(剪切破坏为主),第1组试件表面的总裂纹面积分数和总裂纹分形维数值都高于第2组试件;(3) 具有相同节理连通率的试件,在试验开始点不同节理倾角的总裂纹面积分数基本相同,在峰值荷载点和试验结束点的总裂纹面积分数随节理倾角的变化曲线基本呈V型(最小值在节理倾角为45°处,最大值在节理倾角为0°处);(4) 表面裂纹在试验开始时和加载过程中的各向异性分布特征,可以用裂纹面积分数沿裂纹方位角的分布图来表征。研究结果表明,表面裂纹图像分析可以有效地定量研究节理岩体试件的各向异性损伤演化特征。  相似文献   

20.
为了研究端部裂隙形态对岩石动态力学特性以及裂纹扩展的影响,利用50 mm×50 mm圆柱形大理岩加工含不同裂隙倾角的试样,在50 mm杆径分离式霍普金森压杆(SHPB)试验平台上进行冲击加载试验,并使用高速摄影仪实时记录裂纹扩展以及动态破坏全过程。研究表明,大理岩的动态抗压强度、峰值应变、动态弹性模量等力学参数随预制裂隙倾角增大整体呈先减小后增大的趋势;裂纹大多是从裂隙尖端或附近起裂,起裂裂纹为II型剪切裂纹或I–II型复合裂纹(拉剪复合裂纹),起裂角和起裂应力随着预制裂隙角度的增大分别呈M和W型变化,完整和90°裂隙试样最终呈劈裂拉伸破坏,45°裂隙试样呈拉剪复合型破坏,30°和60°裂隙试样呈剪切破坏,存在一个临界角度,临界角两侧裂纹扩展特性表现出较好的对称性;随着预制裂隙角度的增大,岩石的能量吸收率先增大后减小,当端部裂隙与端面成适当角度,会使能量吸收率最大,可以有效提高破岩效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号