首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catabolism of arginine, an amino acid found in grape juice and wine, citrulline and ornithine was investigated in four lactic acid bacteria. Only Lactobacillus hilgardii X1B catabolized arginine and excreted citrulline into the medium. The recovery of arginine as ornithine was lower than the expected theoretical value. The arginase-urease pathway was not detected indicating that the amino acid degradation was carried out only by the arginine dihydrolase pathway. Oenococcus oeni m, a strain not able to utilize arginine, degraded citrulline that was completely recovered as ornithine, ammonia and CO2. Lactobacillus hilgardii X1B catabolized citrulline but it was only 44% recovered as ornithine. The citrulline utilization by Oenococcus oeni m may be important for two reasons: it can gain extra energy for growth from citrulline metabolism, and the amino-acid diminution could avoid the possibility of ethyl carbamate formation from the citrulline naturally present in wine.  相似文献   

2.
The production of ethyl carbamate (EC) and its precursor citrulline by two strains of Oenococcus oeni and one of Lactobacillus plantarum during malolactic fermentation (MLF) was studied in different conditions of pH, temperature, and ethanol and l -malic acid concentrations. The potential EC, defined as the concentration of EC after wine is heated at 80 °C for 48 h, was also investigated. The O. oeni strains were able to degrade arginine in the conditions studied and to excrete some citrulline. In these strains, the conditions that led to a slight increase in EC were a high ethanol concentration, low pH and a high l -malic acid concentration. However, the potential EC increased with higher pH. In the case of L. plantarum , arginine was not degraded and citrulline was not produced, although the potential EC was comparable with that of the O. oeni strains studied.  相似文献   

3.
The arginine deiminase (ADI) pathway is a means by which certain sourdough lactic acid bacteria (LAB) convert arginine into ornithine via citrulline while producing ammonia and ATP, thereby coping with acid stress and gaining an energetic advantage. Lactobacillus fermentum IMDO 130101, an isolate from a spontaneous laboratory rye sourdough, possesses an ADI pathway which is modulated by environmental pH. In the present study, a broader view of the activity of the ADI pathway in response to growth under two other commonly encountered stress factors, temperature and added salt, was obtained. In both cases, an increase in ornithine production was observed as a response to growth under both temperature and salt stress conditions. Biokinetic parameters were obtained to describe the kinetics of the ADI pathway as a function of temperature and added salt. The arginine conversion rate increased as a function of added NaCl concentrations but was hardly affected by temperature. In addition, arginine-into-citrulline conversion rate was not affected by temperature but increased with increasing NaCl concentrations. Citrulline-into-ornithine conversion rate increased with increasing temperature, while it dropped to zero with added salt. These findings suggest a more pronounced adaptation of the strain through the ADI pathway to added salt, as compared with different constant temperatures. Furthermore, these results suggest that the ADI pathway in L. fermentum IMDO 130101 is active in adapting to non-optimal growth conditions.  相似文献   

4.
Sourdough lactic acid bacteria (LAB) need to be adapted to a highly acidic and, therefore, challenging environment. Different mechanisms are employed to enhance competitiveness, among which conversion of arginine into ornithine through the arginine deiminase (ADI) pathway is an important one. A combined molecular and kinetic approach of the ADI pathway in Lactobacillus fermentum IMDO 130101, a highly competitive sourdough LAB strain, identified mechanisms with advantageous technological effects and quantified the impact of these effects. First, molecular analysis of the arcBCAD operon of 4.8 kb revealed the genes encoding the enzymes ornithine transcarbamoylase, carbamate kinase, arginine deiminase, and an arginine/ornithine (A/O) antiporter, respectively, with an additional A/O antiporter 702.5 kb downstream of the ADI operon. The latter could play a role in citrulline transport. Second, pH-controlled batch fermentations were carried out, generating data for the development of a mathematical model to describe the temporal evolution of the three amino acids involved in the ADI pathway (arginine, citrulline, and ornithine) as a result of the activity of these enzymes and transporter(s). Free arginine in the medium was converted completely into a mixture of citrulline and ornithine under all conditions tested. However, the ratio between these end-products and the pattern of their formation showed variation as a function of environmental pH. Under optimal pH conditions for growth, citrulline release and some further conversion into ornithine was observed. When growing under sub-optimal pH conditions, ornithine was the main product of the ADI pathway. These kinetic data suggest a role in adaptation of L. fermentum IMDO 130101 to growth under sub-optimal conditions.  相似文献   

5.
The objective of this experiment was to determine the capability of ruminant gut tissues to detoxify ammonia-N using short-term incubations of isolated cells in vitro. Ruminal epithelial cells (REC) and duodenal mucosal cells (DMC) were isolated from growing Texel-Polypay ram lambs (n = 4) fed a pelleted forage:concentrate-based diet. Immediately after isolation, primary cells were incubated for 60 min with glucose (1mM), glutamate (1mM), [15N]ammonium chloride (5, 10, 20, or 40 mM), and 1 of 4 combinations of substrates (1 mM each) that could support urea synthesis [control, N-carbamoylglutamate (NCG); NCG + ornithine (ONCG); and ONCG + aspartate (AONCG)]. Treatments were arranged in a 4 × 4 factorial design. Incorporation of ammonia-15N into alanine, citrulline, arginine, and urea was determined by gas chromatography-mass spectrometry. For both cell types, ammonia-N transfer to alanine was lower when incubation medium contained NCG compared with control, whereas use of ammonia-N for net alanine synthesis increased quadratically with ammonia concentration regardless of substrate treatment. For REC, ammonia-N was not incorporated into citrulline, arginine, or urea, nor into arginine or urea by DMC. Ammonia-N use for net citrulline synthesis exhibited an inverse relationship with ammonia concentration, decreasing linearly as media ammonia concentration increased. Thus, ala-nine synthesis may be a significant metabolic pathway for ruminant gut tissues to detoxify ammonia-N when it is presented luminally at high concentrations as compared with detoxification by the ornithine-urea cycle. Furthermore, DMC do exhibit a metabolic capability to incorporate ammonia-N into citrulline, but low or absent activity of downstream enzymes of the ornithine-urea cycle appears to limit ammonia-N transfers to urea.  相似文献   

6.
The accumulation of citrulline and ornithine in wine or beer as a result of the arginine catabolism of some lactic acid bacteria (LAB) species increases the risk of ethyl carbamate and putrescine formation, respectively. Several LAB species, which are found as spoilage bacteria in alcoholic beverages, have been reported to be arginine degrading. This study evaluates the effect of ethanol content and low pH on the excretion of citrulline and ornithine by two strains belonging to the potential contaminant species Lactobacillus brevis and Pediococcus pentosaceus. In the conditions that most affected cell viability, arginine consumption per cell increased noticeably, indicating that arginine utilization may be a stress responsive mechanism. L. brevis showed a higher accumulation of ornithine in the media than P. pentosaceus. In the presence of ethanol, a higher expression of the arcC gene was found in P. pentosaceus, which resulted in a lower excretion of citrulline and ornithine than in L. brevis. This suggests that L. brevis is more likely to produce these amino acids, which are precursors of ethyl carbamate and putrescine.  相似文献   

7.
为丰富降胆固醇、降血糖的益生菌资源,以实验室10株潜力益生菌株为实验对象,进行体外降胆固醇能力、胆盐水解酶(BSH)活性及α-葡萄糖苷酶抑制率试验,测定菌株对人工胃液和胆盐的耐受性,评价优势菌株的细胞黏附性能及对抗生素的耐药安全性能。结果表明,植物乳杆菌LH-511、植物乳杆菌10-12、植物乳杆菌10-4对胆固醇的降解率在50%以上,显著高于商业菌株植物乳杆菌299V(p<0.05)。植物乳杆菌10-12、植物乳杆菌SD-H9对α-葡萄糖苷酶的抑制率高达41.7%、40.1%。植物乳杆菌LH-511、植物乳杆菌10-12、植物乳杆菌10-4、植物乳杆菌10-14、卷曲乳杆菌OF48-2pH5这5株菌具有较好的BSH活力、α-葡萄糖苷酶抑制性、抗逆性以及对HT-29细胞的黏附能力。但仅植物乳杆菌LH-511和卷曲乳杆菌OF48-2pH5通过了10种抗生素的安全性试验。综上所述,植物乳杆菌LH-511和卷曲乳杆菌OF48-2pH5具有较好的降胆固醇、降血糖潜力,且通过了抗逆性、黏附性、安全性试验,可用于进一步的开发和应用。  相似文献   

8.
本文通过对亚硝酸盐降解菌Lactobacillus plantarum SD-7、抗氧化功能菌Lactobacillus plantarum FM-LP-9和抑菌功能菌Lactobacillus alimentarius FM-MM4间的生长相容性、共培养对菌株功能的影响及复合接种发酵豇豆品质和感官评定的研究,制备浅渍豇豆的复合功能发酵剂。结果表明:复合功能发酵剂的3菌株之间具有优良的生长相容性,共培养的菌体密度提高范围为0.49~6.32倍;在3株菌的接种比例为1:1:1的共培养体系中,功能特性发挥最优;复合体系中菌株的亚硝酸盐降解率为96.15%,与Lactobacillus plantarum SD-7单独培养相比,提高8.59%,DPPH自由基清除率为51.23%,ABTS+自由基清除率为64.52%,还原力为175.23 μmol·L?1(L-半胱氨酸),与Lactobacillus plantarum FM-LP-9单独培养相比,分别提高了15.82%、 14.58%和20.66%;抑菌能力与Lactobacillus alimentarius FM-MM4单独培养相比也有显著提高(P<0.05)。与自然发酵CK相比,接种发酵有利于提高浅渍发酵豇豆的品质。  相似文献   

9.
Lactobacillus sakei is frequently present as the dominant lactic acid bacterium in spontaneously fermented meat products, demonstrating its competitiveness in and adaptation to the meat environment. Since meat is generally low in carbohydrate content, the ability to utilize other energy sources to generate ATP, such as arginine via the arginine deiminase (ADI) pathway, represents a competitive benefit. In this study, the kinetics of growth and arginine conversion capabilities of Lb. sakei CTC 494 were analyzed, and a model was set up to describe the influence of pH on growth and arginine conversion. A series of in vitro batch fermentations using reconstituted MRS medium at different constant pH values (pH 4.50-pH 7.75) was performed. Arginine conversion through the ADI pathway, which was activated from the stationary growth phase on, resulted in the production of both citrulline and ornithine for all pH conditions tested. However, the pattern and the ratio of the end-products of the ADI pathway were influenced by pH. For certain pH values (between pH 5.0 and 6.5), a further conversion of citrulline into ornithine was found when all arginine was depleted. Characterization of responses of the ADI pathway in Lb. sakei CTC 494 to environmental conditions will allow a better understanding and control of this important starter culture in meat fermentations.  相似文献   

10.
Two selected strains, Lactobacillus casei FG 1 and Lactobacillus plantarum FG 10 that were isolated from forage crops were used as additives at 1.0 x 10(5) cfu/g of fresh matter to alfalfa, Italian ryegrass, and sorghum, and their effect on fermentation characteristics and aerobic deterioration of silage was studied. The three silages treated with strains FG 1 or FG 10 were well preserved; had significantly lower pH values, butyric acid, propionic acid, and ammonia N concentrations, gas production, and dry matter losses; and had significantly higher contents of residual water-soluble carbohydrates and lactic acid than did the respective control silages. Yeast counts were high in all treated silages and increased rapidly during aerobic exposure. As a result, treated silages spoiled faster upon aerobic exposure than did the respective control silages. Most yeasts isolated from deteriorated silages showed high tolerance to lactic acid but low tolerance to butyric acid, and they were able to grow at low pH conditions and assimilate lactic acid. The results confirmed that L. casei and L. plantarum improved fermentation quality but did not inhibit the growth of silage yeast or aerobic deterioration of the silage.  相似文献   

11.
Ethyl carbamate (EC) is a carcinogenic compound derived from the spontaneous reaction of ethanol with urea or citrulline in Chinese rice wine. Polymerase chain reaction–denaturing gradient gel electrophoresis showed that five species, Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus brevis, Lactococcus lactis and Lactobacillus coryniformis were the most abundant bacteria in the Chinese rice wine production process. Five strains belonging to these species can degrade arginine primarily in the exponential growth phase and accumulate citrulline in MRS‐Arg medium. In addition, an L. brevis strain was shown to be capable of assimilating citrulline, indicating the potential of this strain suggesting a potential route to reduce citrulline content and ethyl carbamate formation in Chinese rice wine fermentation. Copyright © 2018 The Institute of Brewing & Distilling  相似文献   

12.
The metabolism of amino acids by 22 starter and 49 non-starter lactic acid bacteria (LAB) was studied in a system consisting of amino acids and non-growing cells without added amino acceptors such as alpha-ketoglutarate. There were significant inter- and intra-species differences in the metabolism of amino acids. Some amino acids such as alanine, arginine, aspartate, serine and branched-chain amino acids (leucine, isoleucine and valine) were utilised, whereas other amino acids such as glycine, ornithine and citrulline were produced. Alanine and aspartate were utilised by some LAB and accumulated during the incubation of other LAB. Arginine was degraded not only by Lactococcus lactis subsp. lactis (the lactococcal subspecies known to catabolise arginine), but also by pediococci, heterofermentative lactobacilli (Lactobacillus brevis and Lb. fermentum) and some unidentified homofermentative lactobacilli. Serine was utilised predominantly by homofermentative Lb. paracasei subsp. paracasei, Lb. rhamnosus and Lb. plantarum. Of the LAB studied, Lb. brevis and Lb. fermentum were the most metabolically active, utilising alanine, arginine, aspartate, glutamate and branched-chain amino acids. Leuconostocs were the least metabolically active, showing little potential to metabolise amino acids. The formation of ammonia and acetate from amino acid metabolism varied both between species and between strains within species. These findings suggest that the potential of LAB for amino acid metabolism via non-transaminating reactions and endogenous transamination will impact both on the physiology of LAB and on cheese ripening, especially when transamination is rate-limiting in the absence of an exogenous amino acceptor such as alpha-ketoglutarate.  相似文献   

13.
为探究从新疆熏马肠中分离出的植物乳杆菌和唾液乳杆菌在不同环境条件下降解生物胺的效果,通过高效液相色谱(High Performance Liquid Chromatography,HPLC)检测两株菌在不同条件下(生物胺浓度、初始pH、温度、NaCl浓度和乙醇浓度)降解生物胺的情况。结果表明:当生物胺浓度在200~300 μg/mL时两株菌生物胺降解能力基本达到最大,而当生物胺浓度大于300 μg/mL时两株菌降解生物胺的能力逐渐下降,但唾液乳杆菌(Lactobacillus salivarius)对生物胺的降解能力显著高于植物乳杆菌(Lactobacillus plantarum)(p<0.05),分别在pH为6.5和7.0时对大多数生物胺具有较高的降解能力;两株菌均在32~37 ℃温度范围内对生物胺有较好的降解效果;当NaCl浓度达到8%,乙醇浓度达到4.5%时,两株菌对生物胺的降解活性被强烈抑制。可见本研究中的唾液乳杆菌相对于植物乳杆菌更适合作为商业发酵剂,具有更好的降解生物胺的特性。  相似文献   

14.
降亚硝酸盐乳酸菌的鉴定及生长特性的研究   总被引:2,自引:0,他引:2  
范丽平  林婷  张海松  张倩 《食品工业科技》2012,33(18):221-223,235
从传统发酵食品中分离乳酸菌,筛选鉴定降解亚硝酸盐能力较强的菌株,并研究其在白菜汁培养基中的生长及产酸情况,为制作泡菜发酵剂储备优良菌株。结果分离了144株乳酸菌,并获得5株亚硝酸盐降解率在99%以上的菌株,经鉴定菌株Mao21.1和Mao6.2为戊糖乳杆菌,Wang3.1和Mao20.1为植物乳杆菌,Lin2.4为戊糖片球菌。5株菌在白菜汁培养基中生长4h后,各菌株培养液的pH均快速下降;培养20h后,除菌株Mao21.1外,其他菌株培养液pH均降到3.5以下;对数生长末期菌株Mao6.2和Lin2.4活菌数达到108cfu/mL,该两株菌可作为制作泡菜发酵剂的储备菌株。  相似文献   

15.
为筛选具有较强钙转化富集能力的乳酸菌(后续用于鱼骨泥发酵),本文研究了七种乳酸菌(植物乳杆菌CY1-1、植物乳杆菌Z7、戊糖片球菌DBY2-5-1、干酪乳杆菌D400、米酒乳杆菌DL10、嗜酸乳杆菌DL12、清酒乳杆菌YP4-5)及其复合菌株的生长能力、产酸能力和钙富集能力,研究了钙离子浓度、生长时间、pH、温度对初筛菌株钙富集能力的影响,并通过原子力显微镜观察菌体富集前后的表面结构差异,研究乳酸菌的形态变化及钙离子吸附机制。结果表明,单一菌株中钙富集量最高的是植物乳杆菌CY1-1,其次为植物乳杆菌Z7。钙富集能力较强的复合菌株为CY1-1+DL12、Z7+YP4-5,富集量分别较单一菌株提高了6.76和21.69 mg/g。试验菌株在稳定期时的钙富集能力优于对数期,最适富集的钙离子浓度为1.2 mg/mL,Z7菌株的最适pH为6,Z7+YP4-5、CY1-1、CY1-1+DL12菌株的最适pH为7.2,Z7+YP4-5复合菌株的最适温度为37 ℃,其余各组菌株的最适温度为40 ℃。原子力显微镜观察到乳酸菌与钙离子结合后表面结构凸起尖锐,与未结合菌株形态差异明显。上述结果表明,钙富集能力最强的单菌株是植物乳杆菌CY1-1,复合菌株是Z7+YP4-5;乳酸菌能有效吸附钙离子在菌体表面进行富集。  相似文献   

16.
以分离自我国传统酸面团中的优势菌种植物乳杆菌(Lactobacillus plantarum)Sx9、旧金山乳杆菌(Lactobacillus sanfranciscensis)Gm4及酿酒酵母(Saccharomyces cerevisiae)Sq7为发酵菌种,研究其对小麦麦谷蛋白大聚体的溶解性、游离巯基含量及二级结构变化的影响。结果表明,发酵24 h后,植物乳杆菌Sx9、旧金山乳杆菌Gm4及酿酒酵母Sq7使麦谷蛋白大聚体的溶解率分别增加7.06%、2.47%、2.47%。在发酵6~12 h,植物乳杆菌Sx9对二硫键作用明显,发酵液中游离巯基含量从0.29 μmol/mg迅速增加至0.61 μmol/mg。植物乳杆菌Sx9和旧金山乳杆菌Gm4对二级结构的影响明显,发酵6 h后,无规则卷曲含量几乎为零,全部转化为β-折叠和β-转角,而酿酒酵母Sq7影响甚微,仅有极少量的转化。因此,相比于酿酒酵母Sq7,植物乳杆菌Sx9和旧金山乳杆菌Gm4对麦谷蛋白大聚体的降解效果较好,且植物乳杆菌Sx9最佳。  相似文献   

17.
Two arginine-requiring mutant yeast strains grew on arginosuccinic acid or argininic acid in presence of ammonium sulphate but failed to do so on ornithine, citrulline or glycocyamine. The metabolic lesion in these mutants appears to lie therefore in the enzyme system involved in completing the guanidino group of arginine. Arginine could not be replaced by various peptides containing it. Histidine depressed growth on arginine of both the deficient yeast and its parent but growth was somewhat stimulated by certain other amino acids. To some extent the need for all amino acids was met by the use of hexamethylenediamine.  相似文献   

18.
Lee JY  Kim CJ  Kunz B 《Meat science》2006,72(3):437-445
The aim of the investigation was to identify strains of lactobacilli coming from kimchi with properties suitable for use as starter cultures in sausage fermentation. A total of 31 strains of lactobacilli were isolated from kimchi on the 4-6th day of fermentation at 20°C using MRS agar plates and identified on the basis of morphological, biochemical, and physiological characteristics. The isolates were identified as Leuconostoc mes.mes./dent (12.9%), Lactobacillus curvatus (9.7%), Lactobacillus brevis (35.5%), Lactobacillus sake (25.8%), and Lactobacillus plantarum (16.1%). Thus, 51.6% of the isolates were homo-fermentative or facultative hetero-fermentative bacteria and the rest (48.4%) were hetero-fermentative bacteria. Among them L. brevis, L. curvatus, L. plantarum, and L. sake were investigated for their growth profile and metabolism characteristics in the fluid (submerged) model-medium modified according to the special conditions of fermented sausages. Relatively good growth properties were found for L. brevis, L. plantarum, and L. sake with maximum numbers of 8.18, 8.51 and 8.17cfu/ml, respectively, whereas L. curvatus could not adapt to the special environmental conditions. Regarding souring properties, L. brevis showed little ability to decrease pH, whereas L. curvatus, L. plantarum, and L. sake showed relatively good acidifying properties. According to the results of glucose fermentation and its products, only L. plantarum exhibited homo-fermentative characteristics. As a result only L. plantarum among the isolates from kimchi had an ability to adapt to the complex environment of fermented sausage, which will thereby allow them to act as starter cultures and natural preservatives in sausage production.  相似文献   

19.
Five Lactobacillus plantarum strains and two Lactobacillus johnsonii strains, stemming either from African traditionally fermented milk products or children's feces, were investigated for probiotic properties in vitro. The relationship between the hydrophobic-hydrophilic cell surface and adhesion ability to HT29 intestinal epithelial cells was investigated, and results indicated that especially the L. johnsonii strains, which exhibited both hydrophobic and hydrophilic surface characteristics, adhered well to HT29 cells. Four L. plantarum and two L. johnsonii strains showed high adherence to HT29 cells, generally higher than that of the probiotic control strain Lactobacillus rhamnosus GG. Most strains with high adhesion ability also showed high autoaggregation ability. The two L. johnsonii strains coaggregated well with the intestinal pathogens Listeria monocytogenes Scott A, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Salmonella enterica serovar Typhimurium ATCC 14028. The L. plantarum BFE 1685 and L. johnsonii 6128 strains furthermore inhibited the adhesion of at least two of these intestinal pathogens in coculture with HT29 cells in a strain-dependent way. These two potential probiotic strains also significantly increased interleukin-8 (IL-8) chemokine production by HT29 cells, although modulation of other cytokines, such as IL-1, IL-6, IL-10, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor alpha (TNF-alpha), and transforming growth factor beta (TGF-beta), did not occur. Altogether, our results suggested that L. plantarum BFE 1685 and L. johnsonii BFE 6128 showed good adherence, coaggregated with pathogens, and stimulated chemokine production of intestinal epithelial cells, traits that may be considered promising for their development as probiotic strains.  相似文献   

20.
Proteolytic activities were investigated in sorghum-based togwa prepared by natural fermentation and using starter cultures previously isolated from the native product, i.e., Lactobacillus brevis, Lactobacillus cellobiosus, Lactobacillus fermentum, Lactobacillus plantarum, Pediococcus pentosaceus, and Issatchenkia orientalis in coculture with either L. brevis or L. plantarum.Both proteinase and aminopeptidase activities were substantially higher in naturally fermented togwa than in those with starters (14-30%, 12-70%, respectively). A variable but substantial part of the proteinase activity followed the particulate fraction of togwa; aminopeptidase activity was mainly in that fraction. The breakdown of relatively high molecular mass protein (64 kDa) in togwa was detected by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE); the products were mainly in the 14-30 kDa range. Reversed-phase fast-protein liquid chromatography (RP-FPLC)-protein/peptide patterns changed during fermentation with some variation between togwa of different cultures. Supplementation of gruel with malt increased the concentration of total protein [from 9.5% to 11.0% (w/w) on dry weight basis)] and of most of the free amino acids. Fermentation had no effect on total protein content; however, the concentration of most of the amino acids was reduced, except for the proline content that increased. Natural fermentation also increased the concentration of glutamic acid and ornithine. Fermentation by P. pentosaceus increased aspartic acid, while L. cellobiosus, L. fermentum, and L. brevis in coculture with I. orientalis increased the concentration of citrulline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号