首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A system procedure is proposed for a multi-robot rescue system that performs real-time exploration over disaster areas. Real-time exploration means that every robot exploring the area always has a communication path to human operators standing by at a base station and that the communication path is configured by ad hoc wireless networking. Real-time exploration is essential in multi-robot systems for USAR (urban search and rescue) because operators must communicate with every robot to support the victim detection process and ad hoc networking is suitable to configure a communication path among obstacles. The proposed system procedure consists of the autonomous classification of robots into search and relay types and behavior algorithms for each class of robot. Search robots explore the areas and relay robots act as relay terminals between search robots and the base station. The rule of the classification and the behavior algorithm refer to the forwarding table of each robot constructed for ad hoc networking. The table construction is based on DSDV (destination-sequenced distance vector) routing that informs each robot of its topological position in the network and other essentials. Computer simulations are executed with a specific exploration strategy of search robots. The results show that a multi-robot rescue system can perform real-time exploration with the proposed system procedure and reduce exploration time in comparison with the case where the proposed scheme is not adopted.  相似文献   

2.
Urban search and rescue robots have the potential of identifying the location of trapped people following a disaster. The majority of survivors in open spaces will be rapidly located and extracted by rescue personnel. Therefore, the greatest challenge for rescue robotics is to penetrate deep within collapsed buildings to search for survivors. In this paper, several robotic challenges are presented to represent some of the challenges faced within a collapsed building. A robotic mechanism, termed the sweep-extend mechanism is proposed as a means for mobile search and rescue robots to clear a path through loose debris. The mechanism has been mounted on a mobile platform and tested against the proposed scenarios. The mechanism was demonstrated to move debris, such as bricks, away from the path of the robot. The work also highlights limitations in the mechanism’s ability to deal with densely packed debris, collections of large debris, and the need for robust dust shielding.  相似文献   

3.
为了提升灾后救援的侦测能力,解决信息获取问题,给救援人员搜集提供更多更具体的救援信息,以制定科学高效的救援方案。通过对比地面废墟搜救机器人通用技术要求,设计了基于STM32单片机为控制核心的球形救援侦测机器人。球形机器人根据自适应搜索和人机配合辅助搜索,结合摄像头以及5.8 G图传模块将图像信息传输给用户终端,实现用户人机交互使用,通过摇杆控制机器人完成高难度的动作。同时装设的TCRT5000红外探头可以自动追寻黑色轨迹,当机器人的超声波传感器检测到障碍物时,蜂鸣器以及报警灯会动作,发出报警信号,提醒调整侦测方向,完成救援侦测任务。  相似文献   

4.
《Advanced Robotics》2013,27(3):249-272
A remote controlled robot for collecting information in disasters, e.g. earthquakes, is one of most effective applications of robots, because it is very dangerous for human beings to locate survivors in collapsed buildings and, in addition, small robots can move into narrow spaces to find survivors. However, previous rescue systems that use robots have a significant problem — a shortage of operators. In catastrophic disasters, in order to save victims, we must explore wide areas within a limited time. Thus, many rescue robots should be employed simultaneously. However, human interfaces of previous rescue robots were complicated, so that well-trained professional operators were needed to operate the robots and, thus, to use many rescue robots, many professional operators were required. However, in such catastrophic disasters it is difficult to get many professional operators together within a short time. In this paper we address the problem and propose a concept of rescue team organization in which professional rescue staff and volunteer staff work together for handling a catastrophic disaster. We point out the necessity for rescue robots which can be operated easily by non-professional volunteer staff. To realize a rescue robot which can be operated easily, we propose a rescue robot system which has a human interface seen in typical, everyday vehicles and a snake-like robot which has mechanical intelligence. We have demonstrated the validity and the effectiveness of the proposed concept by developing a prototype system.  相似文献   

5.
王楠  吴成东  王明辉  李斌 《机器人》2011,33(2):202-207
针对灾难救援应用领域具体需求,提出了控制站系统的设计原则.基于人机交互技术,设计了可变形灾难救援机器人控制站系统,该系统具有感知信息完整、操控灵活、界面友好、交互性强等特点.通过灾难救援模拟环境进行实验,验证丁该控制站系统可以实现机器人在复杂环境中的运动控制、多通道信息交互等功能,在灾难救援等领域具有可行性及有效性.  相似文献   

6.
The underground building environment plays an increasingly important role in the construction of modern cities. To deal with possible fires, collapses, and so on, in underground building space, it is a general trend to use rescue robots to replace humans. This paper proposes a dual-robot system solution for search and rescue in an underground building environment. To speed up rescue and search, the two robots focus on different tasks. However, the environmental perception information and location of them are shared. The primary robot is used to quickly explore the environment in a wide range, identify objects, cross difficult obstacles, and so on. The secondary robot is responsible for grabbing, carrying items, clearing obstacles, and so on. In response to the difficulty of rescue caused by unknown scenes, the Lidar, inertial measurement unit and multiview cameras are integrated for large-scale 3D environment mapping. The depth camera detects the objects to be rescued and locate them on the map. A six-degree-of-freedom manipulator with a two-finger gripper is equipped to open doors and clear roadblocks during the rescue. To solve the problem of severe signal attenuation caused by reinforced concrete walls, corners and long-distance transmission, a wireless multinode networking solution is adopted. In the case of a weak wireless signal, the primary robot uses autonomous exploration for environmental perception. Experimental results show the robots' system has high reliability in over-the-horizon maneuvering, teleoperation of the door opening and grasping, object searching, and environmental perception, and can be well applied to underground search and rescue.  相似文献   

7.
Tracked robots operating on rough terrain are often equipped with controllable flippers to help themselves overcome large obstacles or gaps. How to automate the control of these auxiliary flippers to achieve autonomous traversal remains an open question, which still necessitates inefficient manual teleoperation in practice. To tackle this problem, this article presents a geometry-based motion planning method for an articulated tracked robot to self-control its flippers during autonomous or semiautonomous traversal over rough terrain in urban search and rescue environments. The proposed method is developed by combining dynamic programming with a novel geometry-based pose prediction method of high computational efficiency, which is applicable for typical challenging rescue terrains, such as stairs, Stepfields, and rails. The efficient pose prediction method allows us to make thousands of predictions about the robot poses at future locations for given flipper configurations within the onboard sensor range. On the basis of such predictions, our method evaluates the entire discretized configuration space and thereby determines the optimal flipper motion online for a smooth traversal over the terrain. The overall planning algorithm is tested with both simulated and real-world robots and compared with a reinforcement-learning-based method using the RoboCup Rescue Robot League standard testing scenarios. The experimental results show that our method enables the robots to automatically control the flippers, successfully go over challenging terrains, and outperform the baseline method in passing smoothness and robustness to different terrains.  相似文献   

8.
One of the important advantages of an active wheeled snake-like robots is that it can access narrow spaces which are inaccessible to other types of robot (such as crawlers, walking robots), since snake-like robots have an elongated, narrow body. Additionally, in areas with rubble, snake-like robots can traverse rough terrain and large obstacles since its body can conform to the terrain’s contours. ‘ACM-R8’ is a new snake-like robot which can climb stairs and reach doorknobs in addition to the features explained above. To fulfill these functions, the design of this robot incorporates several key features: joints with parallel link mechanism, mono-tread wheels with internal structure, force sensors and ‘swing-grousers’ which were developed to improve step climbability. In this paper, the design and control methods are described. Experiments confirmed high mobility on stairs and steps, with the robot succeeding in overcoming a step height of 600 mm, despite the height of the robot being just 300 mm.  相似文献   

9.
本文将面向自主式救援机器人,从现阶段日本、中国对自主式救援机器人研究现状出发,深入分析自主式救援机器人的功能需求和硬件设备需求,并且结合自主式救援机器人工作中所具备的功能进行研究。在灾害事故当中,由于环境复杂救援人员难以勘探真实的灾害环境,从而影响救援效果,而自主式救援机器人则能够通过自身强大的移动、远程通信、监测与跟踪等功能为救援人员提供帮助。面对灾害事故频发的现代化社会,救援机器人的研发已成为全球重要的研究事项。  相似文献   

10.
Hose-shaped rescue robots have been developed for searching narrow spaces such as under collapsed buildings. The posture estimation independent of the past history is critical, because conventional inertial-sensor-based posture estimation has two main problems; a cumulative error problem peculiar to inertial sensors, and a sudden posture change problem caused by external forces. For coping with the two problems, we developed a novel posture estimation method by putting an active microphone array, a set of microphones and loudspeakers, on the robot. The method calculates the time difference of arrival (TDOA) of the reference signal emitted from one loudspeaker, and estimates the posture from the distance obtained by TDOA. This concise method still has three problems: (1) external noise, (2) reverberation and reflection, and (3) obstacles. These problems are tackled by (1) TSP signal, (2) GCC-PHAT and a threshold-based onset detection, and (3) rejecting incorrect onset times, respectively. Experiments with simulated sounds and actual recordings demonstrate that the method attains the performance of estimation comparable to that of conventional methods, that is, less than 20 cm of the tip position error. Even without historical data, the method attains the similar performance while conventional methods fail.  相似文献   

11.
Rescue operation is one of most effective applications of robots. However, previous rescue systems that use robots have a serious problem that is a shortage of professional operators. In this paper, we develop an exploration system of survivors using carbon dioxide, and to solve the problem we apply searching mechanism of bombycid to our system. To demonstrate the effectiveness of the proposed system, experiments have been conducted. This work was presented in part at the 13th International Symposium on Artificial Life and Robotics, Oita, Japan, January 31–February 2, 2008  相似文献   

12.
Robotic urban search and rescue (USAR) is a challenging yet promising research area which has significant application potentials as has been seen during the rescue and recovery operations of recent disaster events. To date, the majority of rescue robots used in the field are teleoperated. In order to minimize a robot operator’s workload in time-critical disaster scenes, recent efforts have been made to equip these robots with some level of autonomy. This paper provides a detailed overview of developments in the exciting and challenging area of robotic control for USAR environments. In particular, we discuss the efforts that have been made in the literature towards: 1) developing low-level controllers for rescue robot autonomy in traversing uneven terrain and stairs, and perception-based simultaneous localization and mapping (SLAM) algorithms for developing 3D maps of USAR scenes, 2) task sharing of multiple tasks between operator and robot via semi-autonomous control, and 3) high-level control schemes that have been designed for multi-robot rescue teams.  相似文献   

13.
《Advanced Robotics》2013,27(3):311-329
Rescue robots have proved to be an extremely useful work partner for urban search and rescue (USAR) missions. Human rescuers who carry out these missions frequently enter dangerous zones to search for survivors; however, due to the unstable nature of collapsed buildings or objects, their lives may also be threatened. For this reason, in order to reduce life-threatening risks, rescue robots are deployed to carry out the job instead. Rescuers can now operate the robots at a safe place while the missions are carried out. When the robots have gathered enough information about the location of the victims and data about their physical conditions, rescuers can then enter the disaster site with enough knowledge to avoid harm and rescue the victims in the shortest time possible. In this paper, we introduce examples of 'effective multiple robot cooperative activities' and 'a study of the number of robots and operators in a multi-robot team' from our experiences gained from participating in RoboCup Rescue competitions.  相似文献   

14.
针对在复杂地形中标准的粒子群算法用于矿井搜救机器人路径规划存在迭代速度慢和求解精度低的问题,提出了一种基于双粒子群算法的矿井搜救机器人路径规划方法。首先将障碍物膨胀化处理为规则化多边形,以此建立环境模型,再以改进双粒子群算法作为路径寻优算法,当传感器检测到搜救机器人正前方一定距离内有障碍物时,开始运行双改进粒子群算法:改进学习因子的粒子群算法(CPSO)粒子步长大,适用于相对开阔地带寻找路径,而添加动态速度权重的粒子群算法(PPSO)粒子步长小,擅长在障碍物形状复杂多变地带寻找路径;然后评估2种粒子群算法得到的路径是否符合避障条件,若均符合避障条件,则选取最短路径作为最终路径;最后得到矿井搜救机器人在整个路况模型中的最优行驶路径。仿真结果表明,通过改进学习因子和添加动态速度权重提高了粒子群算法的收敛速度,降低了最优解波动幅度,改进的双粒子群算法能够与路径规划模型有效结合,在复杂路段能够寻找到最优路径,提高了路径规划成功率,缩短了路径长度。  相似文献   

15.
CONRO: Towards Deployable Robots with Inter-Robots Metamorphic Capabilities   总被引:2,自引:0,他引:2  
Metamorphic robots are modular robots that can reconfigure their shape. Such capability is desirable in tasks such as earthquake search and rescue and battlefield surveillance and scouting, where robots must go through unexpected situations and obstacles and perform tasks that are difficult for fixed-shape robots. The capabilities of the robots are determined by the design specification of their modules. In this paper, we present the design specification of a CONRO module, a small, self-sufficient and relatively homogeneous module that can be connected to other modules to form complex robots. These robots have not only the capability of changing their shape (intra-robot metamorphing) but also can split into smaller robots or merge with other robots to create a single larger robot (inter-robot metamorphing), i.e., CONRO robots can alter their shape and their size. Thus, heterogeneous robot teams can be built with homogeneous components. Furthermore, the CONRO robots can separate the reconfiguration stage from the locomotion stage, allowing the selection of configuration-dependent gaits. The locomotion and automatic inter-module docking capabilities of such robots were tested using tethered prototypes that can be reconfigured manually. We conclude the paper discussing the future work needed to fully realize the construction of these robots.  相似文献   

16.
《Advanced Robotics》2013,27(6-7):771-785
Rescue operations are one of most effective applications for robots and various rescue robots operated by rescue staff have been developed. However, in large-scale disasters, there is a significant problem, i.e., a shortage of operators. In this paper, we consider this problem and propose a snake-like rescue robot which is designed for non-professional volunteer operators. To realize the rescue robot simply, we focus on mechanical design, and realize usability by utilizing properties of its body and the real world. Experiments have been carried out to demonstrate the effectiveness of the proposed robot.  相似文献   

17.
Our work evaluates a mobile robot’s ability to communicate intended movements to humans via projection of visual arrows and a simplified map. Humans utilize a variety of techniques to signal intended movement in a co-occupied space. We evaluated an augmented reality projection provided by the robot. The projection is on the floor and consists of arrows and a simplified map. Two pilots and one quasi-experiment were conducted to examine the effectiveness of visual projection of arrows by a robot for signaling intended movement. The pilot work demonstrates the effectiveness of utilizing arrows as a communication medium. The experiment examined the effectiveness of a simplified map and arrows for signaling the short-, mid-range, and long-term intended movement. Two pilot experiments confirm that arrows are an effective symbol for a robot to use to signal intent. A field experiment demonstrates that a robot can use a projected arrow and simplified map to signal its intended movement and people understand the projection for upcoming short-, medium-, and long-term movement. Augmented reality, such as projected arrows and simplified map, are an effective tool for robots to use when signaling their upcoming movement to humans. Telepresence robots in organizations, museum docents, information kiosks, hospital assistants, factories, and as members of search and rescue teams are typical applications where mobile robots reside and interact with people.  相似文献   

18.
针对矿井地貌环境的非结构性和复杂性,为了提高救灾机器人的越障能力和实际救援能力,分析了轮式救援机器人行走系统的力学系统原理,提出了机器人六轮行走机构的设计方案。六轮移动机器人采用电动推杆为升降系统提供动力;采用独立悬挂系统,减小了车身的倾斜和震动;采用集中控制-分布驱动方式,有利于运动机构性能的发挥;能够根据地形特征调整自己的底座结构,有很强的越障能力和对非结构化地形的适应能力。  相似文献   

19.
Applying a path planner based on RRT to cooperative multirobot box-pushing   总被引:1,自引:0,他引:1  
Considering robot systems in the real world, a multirobot system where multiple robots work simultaneously without colliding with each other is more practical than a single-robot system where only one robot works. Therefore, solving the path-planning problem in a multirobot system is very important. In this study, we developed a path-planner based on the rapidly exploring random tree (RRT), which is a data structure and algorithm designed for efficiently searching for multirobot box-pushing, and made experiments in real environments. A path planner must construct a plan which avoids the robot colliding with obstacles or with other robots. Moreover, in some cases, a robot must collaborate with other robots to transport the box without colliding with any obstacles. Our proposed path planner constructs a box-transportation plan and the path plans of each robot bearing the above considerations in mind. Experimental results showed that our proposed planner can construct a multirobot box-pushing plan without colliding with obstacles, and that the robots can execute tasks according to the plan in real environments. We also checked that multiple robots can perform problem tasks when only one robot could not transport the box to the goal. This work was presented in part at the 13th International Symposium on Articifial Life and Robotics, Oita, Japan, January 31–February 2, 2008  相似文献   

20.
传统A*算法在面向机器人室内多U型障碍的特殊场景下规划路径时,容易忽略机器人实际大小,且计算时间较长。针对这个问题,提出一种改进A*算法。首先引入邻域矩阵进行障碍搜索以提升路径安全性,然后研究不同类型和尺寸的邻域矩阵对算法性能的影响,最后结合角度信息和分区自适应距离信息对启发函数进行改进以提高计算效率。实验结果表明,改进A*算法可以通过更改障碍搜索矩阵的尺寸来获得不同的安全间距,以保证不同机器人在不同地图环境下的安全性;而且在复杂大环境中与传统A*算法相比寻路速度提高了28.07%,搜索范围缩小了66.55%,提高了机器人在遇到动态障碍时二次规划的灵敏性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号