首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 484 毫秒
1.
基于机场禁飞区改建工程基坑围护结构及周围土体变形监测结果,结合软土基坑的变形规律,对复杂施工环境和施工时间限制条件下的围护墙体变形、坑后土体竖向位移、支撑轴力以及立柱桩隆沉等变化规律的时间和空间效应做了总结。研究表明:围护结构测斜沿深度呈现出先增大后减小的趋势,水位平移最大值位置出现在开挖面附近,且围护结构水平位移具有明显的时空效应;地表沉降出现沉降槽,深层土体开挖引起地表沉降为总沉降的主要部分,底板浇筑有效地抑制了墙后地表沉降;支撑轴力随施工进度而增加,第2道支撑的施加可减少第1道支撑轴力;立柱桩位移为上浮,其大小随着基坑开挖而增大并趋于稳定。研究结果对机场禁飞区改建工程基坑开挖具有一定参考价值。  相似文献   

2.
基于郑州市某地铁车站深基坑工程,采用现场监测和理论分析相结合的方法,通过分析桩身水平位移、桩身弯矩和支撑轴力等监测数据,研究桩撑支护体系中钢-混凝土联合内支撑的工作性状。结果表明:桩身最大水平位移出现在基坑深度约1/2位置处;桩身弯矩在基坑开挖阶段不断增大,反弯点下移,基坑开挖面以上最大弯矩绝对值约为开挖面以下相应值的2倍;采用增量法分析钢-混凝土联合内支撑支护体系时,相应桩身水平位移、桩身弯矩分布均与实测成果存在偏差。钢-混凝土联合内支撑支护体系的内力、变形分析模型应充分考虑两类支撑较大的刚度差异,特别是由于活络头滑移等使钢支撑内力进一步衰减而造成的结构内力、变形重分布。  相似文献   

3.
以深圳益田停车场深基坑开挖为案例,以确保地铁车站及周边环境安全为目标,介绍该工程场 区的地质条件、支护形式及施工工序;并根据施工过程的监测结果,借助有限元软件对基坑开挖进行数 值模拟,对地表沉降、桩顶水平位移、支撑轴力和桩顶沉降进行了一系列的分析处理。研究结果表明:基 坑的中上部位置变形最大,横向变形值约为8mm,支撑轴力会随着施工和气温的不同而有所变化。随 着基坑的开挖,支撑轴力不断增加,最后趋于稳定。研究结果可为该支护形式下的深基坑设计与施工提 供一定参考。  相似文献   

4.
以软土地区某相邻基坑工程为背景,采用MIDAS/GTS软件建立三维有限元模型,通过对比单 基坑开挖和双基坑开挖施工工况,分析相邻基坑开挖对本体基坑围护墙侧移、坑外地表沉降及支撑轴力 的影响。结果表明:相邻基坑开挖将引起本体基坑向相邻侧的附加位移,且在同步施工时,靠近相邻基 坑一侧的围护墙附加位移大于另一侧墙体;本体基坑与相邻基坑之间夹心土的地表沉降存在明显的叠 加效应,相邻基坑的开挖将显著增加该部分土体的沉降量;相邻基坑开挖将引起本体基坑支撑轴力的非 对称分布,靠近相邻基坑一侧支撑轴力较小。  相似文献   

5.
深基坑半刚性半柔性支护适用于建筑物密集,施工场地狭小的岩质深基坑支护。通过ABAQUS有限元软件对深基坑半刚性半柔性支护的作用机理及力学特性进行分析。分析得出,由劲性桩承受开挖步荷载并传至上部已施工的预应力锚杆及下部未开挖土体,保证了开挖过程中的基坑稳定性;劲性桩的弯矩及剪力数值计算结果很小,满足强度要求;半刚性半柔性支护与预应力锚杆柔性支护相比,基坑侧壁的水平位移和基坑外侧地表沉降显著减小,基坑侧壁水平位移变化更均匀,支护效果更优;与桩锚支护相比,变形形态相近,最大水平位移发生位置向下转移,最大水平位移值及最大地表沉降值均较小。  相似文献   

6.
基坑开挖与周围环境相互影响,而邻近建筑物对基坑支护体系局部破坏的影响鲜有研究。通过内撑式排桩支护砂土基坑模型试验,研究了坑外有、无建筑物两种情况下基坑开挖、支撑局部破坏和桩后砂土渗漏对内撑式排桩基坑支护体系受力及变形性能的影响。试验结果表明:受邻近建筑物的影响,随基坑逐渐开挖,平行于邻近建筑物长边的支护桩桩顶水平位移增大,而垂直于邻近建筑物长边的支护桩桩顶水平位移减小,同时基坑中部内支撑轴力明显增大,角撑次之,边撑反而减小;邻近建筑物对平行于建筑物长边的支护桩桩身弯矩及反弯点影响较大,而对垂直于建筑物长边的支护桩桩身弯矩影响较小;局部内支撑破坏引起的坑外地面沉降较小,而内支撑连续破坏导致坑外地面产生显著沉降,影响范围为0.12~0.23倍开挖深度,同时临近的未失效支撑轴力显著增大,易引发连续破坏;邻近建筑物对平行于建筑物长边的支护桩桩身弯矩影响较大,对垂直于建筑物长边的支护桩桩身弯矩影响较小。当桩后砂土出现渗漏时,对平行于邻近建筑物长边的支护桩影响更为明显。  相似文献   

7.
为降低实际工程基坑失稳事故发生率,通过室内模型试验研究了支撑失效、土体渗漏等局部破坏对内撑式排桩支护基坑的影响机理。试验结果表明:支撑轴力随基坑开挖加深而增大,靠近基坑中部的支撑轴力增量最大,坑角附近最小;支撑局部失效时,一部分荷载通过围檩传递到邻近支撑,另一部分荷载转换为支护结构的位移协调。当支撑全部失效后,支护结构整体刚度降低,支护体系变为悬臂排桩支护,支护桩位移、弯矩及坑外土体沉降量较支撑全部失效前明显增大;桩后局部土体发生渗漏时,土体迅速垮塌流进坑底形成土堆,同时坑外产生大范围的塌陷区,对周边环境及施工影响较大。  相似文献   

8.
桩锚复合土钉支护结构的位移场分析   总被引:1,自引:0,他引:1  
运用有限元软件对桩锚复合土钉支护结构的位移场进行了数值模拟分析,结果表明:在基坑开挖过程中,土体的水平位移随距开挖面距离的增大而逐渐减小,近土钉侧土体的位移受到土钉的限制,位移曲线出现局部曲折;桩体和面板的水平位移能够协调一致,这两种不同性质的支护形式均能发挥作用;基坑地表沉降曲线呈"勺"形向下弯曲,沉降量随着距基坑开挖面距离的增加而逐渐减小;坑底土体出现隆起现象,随着土钉逐渐发挥作用,隆起的高度趋于稳定.  相似文献   

9.
为了深入研究在不同施工工序下基坑开挖对基坑围护结构的内力和位移及周边环境的影响,运用岩土有限元软件Midas GTS分别模拟了广州某采用桩-锚索支护的高层建筑基坑在不同施工工序下的开挖过程,以及在进行底板施工时不对称堆载对基坑的影响,从而得到了基坑围护结构内力、变形及地表沉降的分布规律。计算分析结果表明:不合理的施工工序对基坑围护结构的内力和位移及地表沉降产生了较大影响,尤其是围护结构水平位移及地表沉降,这使得基坑的稳定性处于不利的状态;该基坑在锚索及时发挥作用比不及时发挥情况下,桩体最大弯矩减少率≥41.77%,地表沉降减少率≥32.75%;基坑底部不均匀堆载使得左、右侧桩体最大弯矩相差>5%,桩体水平位移相差>10%。研究结果将有助于提高深基坑设计水平,为类似工程的设计、施工和研究提供必要的参考。  相似文献   

10.
为研究钢支撑支锚刚度对基坑围护结构的影响,文章以福州地铁潘墩站深基坑工程为背景,运用控制变量法,通过理正深基坑计算软件对不同钢支撑支锚刚度工况下深基坑进行计算分析,得出不同钢支撑支锚刚度下支护结构最大侧向位移、内力、基坑周边地表沉降及支撑轴力变化规律。研究结果表明:钢管内支撑刚度从200MN/m 2增加到600MN/m 2,钻孔灌注桩侧移量减小,地表沉降量降低,钻孔灌注桩迎土侧弯矩、背土侧弯矩呈减小趋势,钢支撑轴力增大,钢支撑对背土侧地下钻孔灌注桩的约束大于迎土侧。适当增加内支撑刚度可控制周边土体变形。  相似文献   

11.
为了揭示位于“V”形沟谷中的某座3级加筋土挡墙的变形规律,在现场实测数据的基础上,重点分析了高填方下3级加筋土高挡墙墙面板位移、墙后填土体沉降、高填方下路面沉降以及挡墙下涵洞底部沉降在施工期间和竣工后的变化情况。结果表明:①加筋土挡墙墙面板的水平位移、竖向位移以及墙后填土体的沉降主要发生在施工期间,且数值都比较大,竣工后1~2 a的时间内,其变形趋于稳定,但总的累积变形较大,说明加筋土挡墙能够适应较大变形的填方工程,这是其优势所在;②在“V”形沟谷中采用高填方下加筋土高挡墙的结构形式能满足路面沉降要求,高填方下的涵洞也是安全的;③由于挡墙筋带的特殊性,使得形成的加筋土挡墙具有锚定板挡墙和土钉墙的某些优点,既能约束墙内土体的变形,又能作为整体很好地同周围“V”形沟谷变形相协调,使得填方内应力重分布,路面沉降变形平缓过渡,未产生明显差异沉降,使用效果良好。这种挡墙结构在山区公路铁路建设中具有广阔的应用前景,值得推广。  相似文献   

12.
被动区土体加固对深基坑变形影响的研究   总被引:1,自引:0,他引:1  
被动区土体加固能有效地控制基坑开挖引起的变形、保护基坑周边环境,在实际工程中得到广泛的应用。对上海软土地区某地铁车站深基坑工程进行数值模拟,系统地研究了不同土体加固形式对基坑变形的影响。研究结果表明该工程采取的坑底加固措施使得基坑变形满足变形控制标准;增大土体加固的深度能显著地减小围护结构侧向位移、地表沉降和坑底隆起;而过度地增大加固土体的割线模量E50ref对控制基坑变形的效果甚微;在同等条件下,满堂加固控制基坑变形的能力明显优于裙边加固。  相似文献   

13.
由于软土的蠕变特性,在基坑开挖过程中存在着时间效应。以宁波某基坑为工程背景,基于SSC模型并利用PLAXIS有限元软件对深基坑的开挖过程进行了数值模拟,分析了开挖工程中支护结构及基坑自身的变形特点。计算结果表明:基坑开挖时地连墙水平位移、地表沉降及支撑内力均随时间发展而增大,但相比之下,基坑隆起的流变效应不甚明显。其中不同工况对应地连墙水平位移最大值发生位置随开挖深度的增大而下降,而地表沉降最大值基本发生在距坑壁10 m位置,且地表沉降累计最大值与累积施工时间满足多项式函数关系;同时不同工况下地连墙弯矩、剪力随深度变化曲线趋势基本一致并呈“S”形。另外随着支撑结构的施加,地连墙水平位移和地表沉降的增加速率均受到一定限制,因此可通过及时施加支撑的方法抑制支护结构的变形及控制内力的急剧变化。上述结论可对宁波地区基坑开挖的施工提供理论指导,以保障施工过程的安全实施。  相似文献   

14.
深大坑中坑基坑围护结构离心模型试验研究   总被引:1,自引:1,他引:0  
圆形地下连续墙作为一种受力合理的围护结构,由于空间"拱效应"的存在,作用在拱圈上的土压力主要在地下连续墙内自身平衡,地下连续墙的水平位移相对较小。基于某深大圆形基坑工程实际,采用离心模拟技术研究基坑开挖过程中基坑围护结构的水平位移和弯矩分布规律。分析表明,基坑地下连续墙最大水平位移为11.6mm,位于上部基坑的中下部,并且随着开挖深度增大,墙体位移逐渐增大且最大位移点不断下移。研究成果可为圆形基坑开挖和支护过程中围护结构的变形规律分析提供参考。  相似文献   

15.
苏华  郝勇 《长江科学院院报》2019,36(11):120-124
花岗岩残积土遇水软化崩解不仅造成施工困难,也给基坑自身安全及周边环境保护带来极大风险。为了研究坑底被动区花岗岩残积土遇水软化崩解对基坑的影响,以花岗岩残积土地区某地铁车站深基坑为对象,运用PLAXIS有限元软件,系统地开展了土体弱化及弱化深度对基坑变形受力影响的有限元计算。结果表明:围护结构水平位移最大值、踢脚变形、地表沉降最大值均随着坑底土体弱化深度的增加而增大,当弱化深度较小时,上述值增长幅度较小,当弱化深度较大时,上述值急剧增大;此外,围护结构水平位移最大值位置及最大弯矩会随着土体弱化深度的增加而增大,临近坑底支撑会随土体弱化深度的增加而承担较大的转移压力。因此,在花岗岩残积土地区基坑工程施工过程中,需减少坑底土体弱化深度,避免土体大范围弱化。研究结果可为其他类似工程施工决策提供参考。  相似文献   

16.
针对某基坑开挖工程采用地下连续墙、坑边预留反压土可行性问题,以该工程预留反压土关键设计思路与施工技术安全经济为目标,首先对基坑开挖过程挡土结构位移土压力曲线进行分析,并基于 Midas /GTS 建立了该基坑开挖工程三维相互作用体系有限元模型,对有/无设置反压土两种基坑工况进行非线性数值比对。结果表明,反压土能有效阻止周围土层和基坑基底的位移,并可对地连墙的不均匀沉降位移起到一定的控制作用,减小对冠梁产生附加次生的弯矩及剪力而导致的结构开裂破坏作用。基坑隆起与是否预加反压土关系不大,若所处地质环境良好,适当的采用反压土支护形式,可有效降低挡土结构位移与内力。变化反压土体积( 包括顶宽、高度、坡度) 对地连墙支护结构最大位移反应具有显著影响,当反压土具有适当体积时,地连墙最大位移反应可降低至 5 cm 以下,采用最优反压土体积参数可大幅降低基坑开挖时的支护费用。  相似文献   

17.
考虑土拱效应的挡土墙被动土压力分析   总被引:2,自引:0,他引:2  
基于库伦土压力理论,假定被动极限状态下挡土墙后大主应力拱迹线为抛物线,考虑土拱效应,推导了被动土压力系数的理论公式,并将其用于水平微分单元法,分析土体处于被动极限平衡状态时的应力状态,得到平动模式下被动土压力强度、合力及合力作用点的计算公式;在此基础上,分析了内摩擦角及墙面摩擦角对被动土压力系数、土压力强度及合力作用点的影响,并与库伦土压力理论等已有方法和模型试验数据进行了对比分析,验证了该计算方法的合理性。  相似文献   

18.
针对深厚淤泥质软土基坑变形过大的问题,采用了水泥土搅拌桩与地下连续墙组合支护方案,为了解该支护方案中地下连续墙的变形特征,利用FLAC~(3D)数值模拟软件对深圳地铁十号线地铁停车场深基坑进行分析。结果表明:模拟结果与实测数据拟合较好,预测开挖完成后基坑周围土体最终沉降为22.91 mm,小于警戒值。在水泥土搅拌桩支护条件下,除按原工况1 200 mm厚地连墙条件外,分别模拟了1 100 mm、1 000 mm、900 mm、800 mm、700 mm不同地下连续墙厚度条件下的变形情况,第一层开挖时各条件下土体沉降相差不大。随着开挖的进行,沉降值开始发生变化,土体沉降值最小为47.33 mm,发生在1 100 mm厚条件下,最大为93.85 mm发生在700 mm厚条件下。地下连续墙水平变形最大值均发生在距墙顶15 m处左右。在700 mm条件下变形值最大达到了42.58 mm,1 100 mm条件下最小,其值为25.71 mm。因此,该深基坑工程在水泥土搅拌桩支护成槽条件下,可适当减少地连墙厚度,采用1 100 mm厚地连墙能保证基坑安全的前提下降低造价。  相似文献   

19.
基于FLAC-3D建立了某深基坑复合土钉墙支护形式的数值模型,对开挖过程进行了三维动态模拟,并与现场监测数据作了对比分析,力求为深基坑复合土钉墙支护的设计和施工提出合理的建议。分析表明,土体地表位移随着开挖深度的变化而变化,土体最大沉降量发生在距基坑坡顶开挖边线一定距离的地表;沿深度方向,土体水平位移向坑内偏移,且水平位移最大值位于基坑坑壁中部偏下位置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号