首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Jinbo Li 《Polymer Bulletin》2006,56(4-5):377-384
Summary Epoxy resin/polyurethane interpenetrating polymer network nanocomposites with various contents of organophilic montmorillonite (oM-EP/PU nanocomposites) were prepared by a sequential polymeric technique and an in situ intercalation method. X-ray diffraction(XRD), and transmission electronic microscopy(TEM) analysis showed that organophilic montmorillonite (oMMT) disperses uniformly in epoxy resin/polyurethane interpenetrating networks(IPNs), and the intercalated or exfoliated microstructures of oMMT are formed. Differential scanning calorimetry(DSC) test proved that oMMT promotes the compatibility of EP phase and PU phase, and glass transition temperature(Tg) of oM-EP/PU nanocomposites improves with increasing oMMT content. Mechanical properties tests and thermal gravity analysis (TGA) indicated that oMMT and the IPNs of EP and PU exhibit synergistic effect on improving mechanical and thermal properties of pure EP. The mechanism of toughing and reinforcing of oM-EP/PU nanocomposites was further discussed by scanning electronic microscope(SEM).  相似文献   

2.
Summary Novel nanocomposites with varying contents of organophilic montmorillonite (oMMT) were prepared by intercalating oMMT to interpenetrating polymer networks (IPNs) of polyurethane and epoxy resin (PU/EP). The PU/EP networks and the oMMT modified PU/EP IPNs nanocomposites were studied with Fourier transform infrared spectrometry, scanning electronic microscopy, transmission electronic microscopy, wide-angle X-ray diffraction, water absorption and tensile test. The results show that oMMT and the IPNs of polyurethane and epoxy resin exhibit synergistic effect on the phase structure and morphology of the IPNs nanocomposites. The addition of oMMT to the PU/EP IPNs matrix provides two fold benefits to the properties of the IPNs nanocomposites. oMMT has not a distinct effect on chemical structure of PU/EP IPNs but promotes the compatibility and phase structure of the IPNs, and the forced compatibility of PU and EP in interpenetrating process improves the dispersion degree of oMMT. Both the mechanical properties and water resistance of the PU/EP IPNs nanocomposites are superior to those of the pure PU/EP IPNs.  相似文献   

3.
Nanocomposites with varying concentrations of nanosized silicon dioxide particles were prepared by adding nanosilica to interpenetrating polymer networks (IPN)s of polyurethane and epoxy resin (PU/EP). The PU/EP IPNs and nanocomposites were studied by dynamic mechanical analysis, scanning electronic microscopy, wide‐angle X‐ray diffraction and small‐angle X‐ray scattering. The result showed that adding nanosize silicon dioxide can improve the properties of compatibility, damping and phase structure of IPN matrices. Copyright © 2003 Society of Chemical Industry  相似文献   

4.
An organophilic palygorskite (o‐PGS) prepared by the treatment of natural palygorskite with hexadecyl trimethyl ammonium bromide was incorporated into interpenetrating polymer networks (IPNs) of polyurethane (PU) and epoxy resin (EP), and a series of PU/EP/clay nanocomposites were obtained by a sequential polymeric technique and compression‐molding method. X‐ray diffraction and scanning electron microscopy analysis showed that adding nanosize o‐PGS could promote the compatibility and phase structure of PU/EP IPN matrices. Tensile testing and thermal analysis proved that the mechanical and thermal properties of the PU/EP IPN nanocomposites were superior to those of the pure PU/EP IPN. This was attributed to the special fibrillar structure of palygorskite and the synergistic effect between o‐PGS and the IPN matrices. In addition, the swelling behavior studies indicated that the crosslink density of PU/EP IPN gradually increased with increasing o‐PGS content. The reason may be that o‐PGS made the chains more rigid and dense. As for the flame retardancy, the PU/EP nanocomposites had a higher limiting oxygen index than the pure PU. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
聚氨酯/环氧树脂互穿网络复合材料的防腐性能研究   总被引:1,自引:0,他引:1  
采用原位插层聚合与聚合物互穿技术相结合,制备了有机蒙脱土改性的聚氨酯/环氧树脂(PU/EP)互穿网络复合材料。用正交实验研究了异氰酸酯基团与羟基物质的量的比(异氰酸酯指数,R值)、有机蒙脱土含量等对PU/EP复合材料粘结性能的影响,用电化学测试塔菲尔曲线,研究了有机蒙脱土改性PU/EP复合材料的防腐性能。结果表明,最佳合成工艺条件为:异氰酸酯指数为1.0,蒙脱土含量3%,在80℃下反应2 h,制得的PU/EP复合材料剥离剪切强度达10 MPa,最佳合成工艺制得涂层极化电阻为纯环氧树脂涂层的20倍。  相似文献   

6.
The excellent synergistic effect of physical/mechanical properties of polyurethane/epoxy (PU/EP) interpenetrating polymer network (IPN) and the validity of nanofilling have one potential to improve the wear resistance of polymeric materials. With the aim of practical application, PU/EP IPN nanocomposites are prepared with nanodiamond (ND) as a reinforcing additive. Results showed the uniform thermal stability and the excellent compatibility between PU and EP in ND‐hybridized PU/EP IPN. Simultaneously, ND particles work as crosslinked points improving the physical/mechanical properties of ND‐hybridized PU/EP IPN, especially the wear resistance. The measurement of tribological property and the scanning electron microscope indicated that the wear resistance is able to be improved a lot by the formation of IPN and by the addition of ND. Consequently, the tribological mechanism of PU/EP IPN nanocomposites comes into being. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40244.  相似文献   

7.
Polyurethanes (PU) based on toluene diisocyanate (TDI) and polypropylene glycol 2000 (PPG) were reacted with an epoxy resin (EP) to prepare interpenetrating polymer networks (IPNs). Three kinds of electroconductive adhesives were prepared by dispersing nano-graphite (NanoG) into different matrices, i.e., pure PU, crosslinked PU/EP, and pure EP. The effects of epoxy content on morphological structure, conducting properties, thermal stability, and adhesive properties of the electroconductive adhesives were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, standard digital multimeter, dynamic mechanical thermal analysis, and lapshear tests. The results indicate that epoxy in the polyurethane-epoxy IPN adhesives plays an important role in clanging the morphological structure and improving conductivity properties, thermal stability, and adhesive properties of the electroconductive adhesives of PU.  相似文献   

8.
In this work, we prepared the interpenetrating polymer networks of bismaleimide and polyether-type polyurethane(polyoxypropylene)–crosslinked epoxy (BMI/PU(PPG)–EP IPNs) by employing the simultaneous bulk polymerization technique. The polyurethane (PU)–crosslinked epoxy was identified via infrared (IR) spectra analysis. Also investigated herein were the mechanical properties, including tensile strength, Izod impact strength, and fracture energy (GIC) of the IPNs with various BMI contents in PU–crosslinked epoxy matrix. In addition, differential scanning calorimetry (DSC) analysis and the thermogravimetric analysis (TGA) were performed to examine the thermal properties of the BMI/PU(PPG)–EP IPNs. In addition, morphology and dynamic mechanical analysis (DMA) of the BMI/PU(PPG)–EP IPNs were also studied. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2635–2645, 1998  相似文献   

9.
A new nanofiller containing layered organo‐modified montmorillonite (oMMT) and spherical silica (SiO2) was prepared by an in situ deposition method and coupling agent modification. Fourier transform infrared spectrometry, X‐ray diffraction and transmission electron microscopy show that there are interactions between oMMT and SiO2, and the spherical SiO2 particles are self‐assembled on the edge of oMMT layers, forming a novel layered–spherical nanostructure. An epoxy resin (EP)/oMMT–SiO2 nanocomposite was obtained by adding oMMT–SiO2 to EP matrix. Morphologies and mechanical and thermal properties of the new ternary nanocomposite were investigated. For purposes of comparison, the corresponding binary nanocomposites, i.e., EP modified with either oMMT or SiO2, were also tested. The results for the mechanical properties show that oMMT obviously improves the strength of EP, and SiO2 enhances the toughness of EP, but oMMT–SiO2 exhibits a synergistic effect on toughening and reinforcing of EP. The toughening and reinforcing mechanism is explained by scanning electron microscopy. In addition, the thermal resistance of EP/oMMT–SiO2 is better than that of EP/SiO2, but it is worse than that of EP/oMMT. Copyright © 2006 Society of Chemical Industry  相似文献   

10.
Organic montmorillonite (OMMT) modified polyurethane (PU) /epoxy resin (EP) (OMMT-PU/EP) graft interpenetrating polymer network nanocomposites with different content of OMMT were prepared. The effect of the OMMT content on the phase behavior of the PU/EP IPN system has been studied by Dynamic mechanical analysis (DMA). With the content of OMMT increased, the tan δ turned from single peak to two peaks and the damping temperature range became wider when the isocyanate index is low. Transmission electron microscope (TEM) and atomic force microscope (AFM) results showed that high content of OMMT favored phase separation to form a larger-size domain in nanocomposites, resulting in the broadening of damping temperature range. This work demonstrates that we can control phase behaviour of OMMT-PU/EP IPNs by changing the OMMT content. This result provides potential opportunity for this type of materials to be used as sound and vibration damping polymers over wide temperature ranges.  相似文献   

11.
In the present investigation, a macromonomer of polyurethane acrylate (PUA) was synthesized, and novel netlike nanocomposite materials were prepared through in situ polymerization of polyurethane acrylate macromonomers in the presence of organically modified montmorillonite (oMMT). The structure of oMMT was compared with untreated MMT by Fourier transform infrared (FTIR) and X-ray diffraction (XRD). Transmission electronic microscopy (TEM) studies showed that the silicate layers of oMMT were dispersed homogeneously in the polymer matrix. Tensile test, impact test, and thermal gravity analysis proved that the mechanical and thermal properties of the nanocomposites are superior to those of the pure system, and the mechanical properties of the cured hybrid reach maximum while the content of oMMT is 1.5 wt%. Surprisingly, dynamic mechanical thermal analysis (DMTA) displayed that the glass transition temperature (Tg) of the nanocomposites decreased with increasing the oMMT contents. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

12.
Interpenetrating polymer networks of bismaleimide‐modified polyurethane–epoxy systems were prepared using the aliphatic and aromatic bismaleimides‐ and polyurethane‐modified epoxy and cured in the presence of 4,4′‐diaminodiphenylmethane. Infrared spectral analysis was used to confirm the polyurethane‐crosslinked epoxy (PU–EP). The matrices developed were characterized by mechanical, thermal, electrical, and morphological studies. The results obtained from the mechanical studies indicate that the incorporation of polyurethane and bismaleimides into epoxy increased the tensile strength, flexural strength, and impact strength, according to their nature and percentage concentration. The results obtained from the thermal and electrical studies indicate that the incorporation of polyurethane into epoxy decreased the thermal properties (glass transition temperature, heat distortion temperature (HDT), thermal stability) and electrical properties (dielectric strength, volume and surface resistivity, and arc resistance). The incorporation of aromatic bismaleimide into the polyurethane‐modified epoxy system increased the glass transition temperature, thermal stability, and electrical properties. Decreased values of glass transition and HDT were obtained in the case of aliphatic bismaleimide‐modified polyurethane–epoxy system. Surface morphology of modified epoxy systems was studied using scanning electron microscopy, and it was found that the polyurethane‐modified epoxy systems exhibited heterogeneous morphology and bismaleimides‐modified epoxy systems showed a homogeneous morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3592–3602, 2006  相似文献   

13.
Films from castor oil‐based polyurethane (PU) prepolymer and nitroguar gum (NGG) with different contents (10–70 wt %) were prepared through solution casting method. The networks of PU crosslinked with 1,4‐butanediol were interpenetrated by linear NGG to form semi‐interpenetrating polymer networks (semi‐IPNs) in the blend films. The miscibility, morphology, and properties of the semi‐IPNs coded as PUNG films were investigated with Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, dynamic mechanical thermal analysis, wide‐angle X‐ray diffraction, density measurement, ultraviolet spectroscopy, thermogravimetric analysis, tensile, and solvent‐resistance testing. The results revealed that the semi‐IPNs films have good miscibility over the entire composition ratio of PU to NGG under study. The occurrence of hydrogen‐bonding interaction between PU and NGG played a key role in improvement of the material performance. Compared with the pure PU film, the PUNG films exhibited higher values of tensile strength (11.7–28.4 MPa). Meanwhile, incorporating NGG into the PU networks led to an improvement of thermal stability and better solvent‐resistance of the resulting materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104, 4068–4079, 2007  相似文献   

14.
以α,ω-双(γ-羟丙基)聚二甲基硅氧烷(BHPDMS)和聚氧四甲基二醇(PHMO)混合大二醇作为软链段,首先通过两步溶液聚合法合成了-NCO封端的混合大二醇基聚氨酯(PU)弹性体预聚物(PUT);然后以PUT和环氧树脂(EP)预聚物为原料、1,3-双(γ-氨丙基)-1,1,3,3-四甲基二硅氧烷(BATS)为交联剂,采用同步溶液聚合法合成了PUT/EP互穿聚合物网络(PUT/EP I PN)。使用傅里叶红外光谱(FT-I R)法、动力学分析(DMA)法和扫描电子显微镜(SEM)法,对PUT和PUT/EP I PN进行分析和表征,并对其力学性能和表面疏水性进行测试。实验结果表明,PUT/EP I PN中不存在宏观相分离状态,仅发生微观相分离状态;当PUT/EP I PN中w(PUT)=50%时,PUT/EP I PN具有优异的综合力学性能和表面疏水性。  相似文献   

15.
PU/EP/PPGDA三元IPN弹性体的结构研究   总被引:3,自引:0,他引:3  
用红外光谱 (IR)、扫描电子显微镜 (SEM )、X光电子能谱 (XPS)研究了以聚氨酯 (PU)为第一网络的三元IPN聚氨酯 /环氧树酯 /聚丙二醇二丙烯酸酯 (IPNPU/EP/PPGDA)弹性体的互穿特性和形态结构。研究结果表明 ,各元素在三元IPN表面和内部分布不一致 ,表明三种聚合物在IPN中的分布是不均匀的 ,这种差异与IPN组成、组成聚合物间的相容性以及形态结构有密切联系  相似文献   

16.
聚氨酯/环氧树脂互穿网络聚合物硬质泡沫机械性能研究   总被引:3,自引:0,他引:3  
采用同步法合成了聚氨酯/环氧树脂互穿网络聚合物(PU/EP IPN)硬质泡沫,对机械性能进行了研究。结果表明,与纯聚氨酯硬质泡沫相比,PU/EP IPN硬质泡沫的压缩强度和弯曲强度明显提高,在PU/EP IPN硬质泡沫中,随环氧树脂含量增加,PU/EP IPN硬质泡沫压缩强度和弯曲强度随之增大,当E-39D质量分数增加到24.2%时,PU/EP IPN硬质泡沫压缩强度和弯曲强度出现最大值;PU/EP IPN硬质泡沫机械强度随材料密度的增大而增加;随着环氧树脂中环氧值的增加,PU/EP IPN硬质泡沫的压缩强度、弯曲强度和拉伸强度均呈逐渐升高的趋势。  相似文献   

17.
Blocked polyurethane (PU)/epoxy full‐interpenetrating polymer network (full‐IPN) were synthesized from blocked NCO‐terminated PU prepolymer, with 4,4‐methylene diamine as a chain extender and epoxy prepolymer, with 4,4‐methylene diamine as a curing agent, using simultaneous polymerization (SIN) method. From FTIR spectra analysis it was found that the major reactions in the blocked PU/epoxy IPN system are the self‐polymerization of block PU/chain extender and the self‐polymerization of epoxy/curing agent. Meanwhile, from reaction mechanisms the copolymerization of IPN may have occurred at the same time. The weight loss by thermogravimetric analysis decreased with increasing epoxy and filler content. It was confirmed from scanning electron micrography (SEM) that when the blocked PU content increased, the microstructure of IPN became rougher. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 323–328, 2006  相似文献   

18.
Layered double hydroxide (LDH) is a new type of nanofiller, which improves the physicochemical properties of the polymer matrix. In this study, 1, 3, 5, and 8 wt % of dodecyl sulfate‐intercalated LDH (DS‐LDH) has been used as nanofiller to prepare a series of thermoplastic polyurethane (PU) nanocomposites by solution intercalation method. PU/DS‐LDH composites so formed have been characterized by X‐ray diffraction and transmission electron microscopy analysis which show that the DS‐LDH layers are exfoliated at lower filler (1 and 3 wt %) loading followed by intercalation at higher filler (8 wt %) loading. Mechanical properties of the nanocomposite with 3 wt % of DS‐LDH content shows 67% improvement in tensile strength compared to pristine PU, which has been correlated in terms of fracture behavior of the nanocomposites using scanning electron microscope analysis. Thermogravimetric analysis shows that the thermal stability of the nanocomposite with 3 wt % DS‐LDH content is ≈ 29°C higher than neat PU. Limiting oxygen index of the nanocomposites is also improved from 19 to 23% in neat PU and PU/8 wt% DS‐LDH nanocomposites, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Semi‐interpenetrating polymer networks were synthesized starting from polyurethane (PU) and epoxy maleate of bisphenol A (EMBA). Differential scanning calorimetry and swelling measurements showed good miscibility and the presence of the strong intermolecular interactions within the synthesized networks. The physicomechanical properties increased against PU to a maximum value with the increasing of EMBA content up to 12 wt % and then decreased with further increasing EMBA content. Generally, with exception of the elongation at the limit of elasticity, the mechanical properties improved very much under action of the UV radiation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 138–144, 2002  相似文献   

20.
The reaction behavior and physical properties of polyurethane (PU)/clay nanocomposite systems were investigated. Organically modified clay was used as nanofillers to formulate the nanocomposites. Differential scanning calorimetry was used to study the reaction behavior of the PU/clay nanocomposite systems. The reaction rate of the nanocomposite systems increased with increasing clay content. The reaction kinetic parameters of proposed kinetic equations were determined by numerical methods. The glass transition temperatures of the PU/clay nanocomposite systems increased with increasing clay content. The thermal decomposition behavior of the PU/clay nanocomposites was measured by using thermogravimetric analysis. X‐ray diffractometer and transmission electronic microscope data showed the intercalation of PU resin between the silicate layers of the clay in the PU/clay nanocomposites. A universal testing machine was used to investigate the tensile properties of the PU/clay nanocomposites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1641–1647, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号