首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, a numerical-based model has been proposed to calculate distributions of temperature, strain and strain rate during hot rolling as well as the subsequent microstructural changes after hot rolling of an aluminum alloy. For doing so, a transient finite difference analysis together with a stream function method have been coupled to calculate temperature distribution and velocity field within the rolling metal. A new approach considering internal state variables method has been employed to predict the kinetics of static recrystallization after hot rolling. The predicted results were then compared with the experimental ones and a good consistency was observed between the two sets of data.  相似文献   

2.
The static recrystallization behaviors in 42CrMo steel were investigated by isothermal interrupted hot compression tests. Based on the experimental results, an efficient artificial neural network (ANN) model was developed to predict the flow stress and static recrystallized fractions. The effects of the deformation temperature, strain rate and deformation degree, as well as initial grain sizes, on the static recrystallization behaviors in two-pass hot compressed 42CrMo steel were investigated by the experiments and ANN model. A very good correlation between the experimental and predicted results from the developed ANN model has been obtained, which indicates that the excellent capability of the developed ANN model to predict the flow stress level and static recrystallization behaviors in two-pass hot deformed 42CrMo steel. The effects of strain rate, deformation temperature and degree of deformation on the static recrystallization behaviors are significant, while those of the initial austenite grain size are slight.  相似文献   

3.
A multiscale modelling framework has been proposed to characterize microstructure evolution during hot strip rolling of transformation-induced plasticity (TRIP) steel. The modelling methodology encompasses a continuum dislocation density evolution model coupled with a lumped parameter heat transfer model which has been seamlessly integrated with a mesoscale Monte Carlo (MC) simulation technique. The dislocation density model computes the evolution of dislocation density and subsequently constitutive flow stress behaviour has been predicted and successfully validated with the published data. A lumped-parameter transient heat transfer model has been developed to calculate the average strip temperature in the time domain. The heat transfer model incorporates the effect of plastic work for different strain rates in the energy conservation formulation. A coupled initial value problem solver has been developed to integrate the system of stiff ordinary differential equations in the time domain to predict dislocation density and temperature profiles simultaneously. The temporal evolution of microstructure during hot rolling of TRIP steel is simulated by the MC method incorporating thermal and dislocation density data from the continuum models. Simulated microstructural maps, kinetics of recrystallization and grain size evolution have been generated in a 200 × 200 lattice system at different strain rates and temperatures. The simulation code has been implemented in a high-performance grid computing network. The predicted temporal evolution of grain size, recrystallized fractions and flow stress have been validated with the published literature and found to be in good agreement, confirming the predictive capability of the integrated model.  相似文献   

4.
Rod rolling is a process in which the deformation of the workpiece between the work rolls is quite different from the rod drawing process, but the area strains (natural logarithm of area reduction ratio) multiplied by a constant have been used in the calculation of the pass-by-pass evolution of austenite grain size in rod (or bar) rolling without any verification. Considering that the deformation parameters (strain and strain rate) at a given pass play a crucial role in determining recrystallization behavior, the calculation method for the deformation parameters associated with rod rolling should be examined. In this study, a series of numerical simulations has been carried out using an area strain model [5] and an analytic model [6] which calculate the pass-by-pass strain in the rod rolling process, focusing on the effect of the calculation method for the pass-by-pass strain on the recrystallization behavior and evolution of AGS (austenite grain size) during a given pass. These have been investigated for a six-pass rolling sequence (oval-round or round-oval) designed for this study by incorporating the recrystallization and AGS evolution model being widely used in hot rolling. It was found that the recrystallization behavior and evolution of AGS during a given pass were significantly influenced by the calculation methods for deformation parameters. The area strain model lacks mathematical grounds to be used as input to the equations for recrystallization and AGS evolution.  相似文献   

5.
深入分析了各变形工艺参数对TB8合金固溶处理显微组织的影响规律,建立了固溶组织再结晶体积分数、平均晶粒尺寸与变形工艺参数间的神经网络预测模型。结果表明,冷却和热处理制度相同的条件下,变形温度、变形程度和应变速率等变形工艺参数对TB8钛合金形变且固溶处理后的显微组织有重要的影响,若想获得晶粒较为细小且均匀的组织,需要在合适的应变速率下适当提高变形程度和降低变形温度;人工神经网络的预测结果与实测结果的高度拟合,表明人工神经网络模型可以较为精确地预测TB8合金的显微组织随变形工艺参数的变化而变化的情况。以上研究工作为TB8合金热加工工艺的制定提供了更为科学的理论依据。  相似文献   

6.
低合金钢Q345B动态再结晶动力学模型   总被引:3,自引:0,他引:3  
采用Gleeble-3500热模拟实验机对低合金钢Q345B进行热压缩实验,研究其在变形温度为900~1100℃和应变速率为0.01~10s-1条件下的动态再结晶行为。结果表明:低合金钢Q345B在变形过程中存在动态再结晶现象,且随着温度的升高和应变速率的降低,临界应变越小,动态再结晶越易发生。根据流变应力、应变速率和变形温度的相关性,得到了动态再结晶激活能。通过对热模拟实验数据的分析计算,建立了峰值应变模型,动态再结晶临界应变模型和动态再结晶动力学模型。并对动态再结晶动力学模型进行了误差分析,证明了模型具有较高的精确性。最后,通过所建立的模型分析了变形条件对动态再结晶的影响,验证了实验所得出的在高温、低应变速率下更有利于动态再结晶发生的规律。  相似文献   

7.
This study presents a mathematical model for computing the thermo-mechanical parameters such as the strain and strain rate at a given pass and the temperature variation during rolling and cooling between inter-stands (pass), to assess the potential for developing “Thermo-Mechanical Controlled Process” technology in rod (or bar) rolling, which has been a well-known technical terminology in strip (or plate) rolling since the 1970s. The model has then been applied to a four-pass (oval-round or round-oval) bar rolling sequence for predicting the pass-by-pass AGS, by incorporating the equation for recrystallization behavior and AGS evolution being widely used in strip rolling. The predicted AGS was compared with those obtained from the hot torsion experiment. Results revealed the proposed model, coupled with the recrystallization behavior and AGS evolution model developed for strip (or plate) rolling, might be applied directly to rod (or bar) rolling. We also found that the recrystallization behavior during rod rolling was significantly influenced by the method for calculating the thermo-mechanical parameters, especially the strain.  相似文献   

8.
《Acta Materialia》1999,47(8):2377-2389
The recrystallization behaviour of an Al–1% Mg alloy has been investigated following hot deformation under varying strain-rate conditions. Significant differences in recrystallized grain size and recrystallization kinetics are observed following a decreasing strain rate, as compared with constant strain-rate tests. These differences reflect the microstructural transients, which are presented in an accompanying paper. It is shown that the data are reasonably consistent with a physically based internal state variable model for recrystallization. A feature of the modelling is the sensitivity analysis conducted, which indicates the degree of uncertainty in predicting recrystallization behaviour, and identifies the critical areas in which experimental effort should be concentrated.  相似文献   

9.
A constitutive model for hot deformation of a medium-carbon spring steel has been developed and validated using isothermal compression experiments at monotonic and abruptly changed strain rate conditions, providing data for the flow stress and softening kinetics. The integrated deformation-softening constitutive model is based on the two hypotheses: (a) instantaneous response of the microstructure to varying temperature–strain rate conditions and (b) invariance of the kinetics of different strain states having equal effective plastic strain. It has been implemented in a FEM code and applied to bar and rod hot rolling schedules. The predictions for the plain medium-carbon steel considered indicate that dynamic (DRX) and metadynamic (MDRX) recrystallisation are possible to occur in both the roughing and finishing mills. A comparison for the same rolling schedule applied to a medium-carbon multialloyed steel shows that its higher resistance to DRX cannot prevent recrystallisation in the intermediate mill, but it can in the finishing mill if there is no significant strain accumulation.  相似文献   

10.
During hot deformation of Al–Mg–Si alloys, a non-uniform microstructure is developed due to differences in localized strain. Physical simulations were performed to examine the effects of processing parameters such as deformation temperature, total reduction, rolling schedule and alloying additions on the grain structure evolution. Overall, the kinetics of recrystallization followed the traditional trends predicted by JMAK kinetics. Electron backscatter diffraction (EBSD) was used to quantify the difference in recrystallization kinetics at the sample surface and mid-thickness. The results showed that the surface showed elevated kinetics when compared to the sample mid-thickness.  相似文献   

11.
采用原始JC模型、修正JC模型和应变补偿Arrhenius方程,描述了Incoloy825合金在不同温度(950~1150 °C)和应变速率(1~10 s-1)下经摩擦和温升修正后的应力-应变曲线。结果表明,修正后曲线具有明显的动态再结晶特征。与原始JC模型和修正的JC模型相比,Arrhenius应变补偿模型更适合于描述Incoloy825合金热变形过程中的应力应变行为。温度和应变速率对特殊晶界的演变有显著影响。特殊晶界长度分数与动态再结晶分数呈正相关。与冷轧后退火处理工艺相比,热变形工艺调控的特殊晶界长度分数较低,热变形工艺不适合用来调整特殊晶界分数,其原因是在热变形过程中动态再结晶的大量形核造成较小的晶粒团簇。  相似文献   

12.
To better understand the dynamic recrystallization (DRX) behavior of 35CrMo steel during hot deformation, a series of isothermal compression tests were carried out at different temperatures and strain rates. Using a constitutive equation built from the data obtained and the Arrhenius equation, the activation energy for hot deformation was determined through regression to be 342.69 kJ/mol. A model of the DRX kinetics was also constructed to characterize the influence of accumulated strain, temperature and strain rate on DRX evolution, which revealed that lower temperatures and higher strain rates require greater strain to achieve the same DRX volume fraction. Optical examination of the microstructure after deformation confirmed that this model accurately reflects reality and that grain size varies directly with deformation temperature, but inversely with strain rate.  相似文献   

13.
In order to increase the hot workability and provide proper hot forming parameters of forging Z12CN13 martensite stainless steel for the simulation and production, the static recrystallization behavior has been studied by double-pass hot compression tests. The effects of deformation temperature, strain rate and inter-pass time on the static recrystallization fraction by the 2% offset method are extensively studied. The results indicate that increasing the inter-pass time and the deformation temperature as well as strain rate appropriately can increase the fraction of static recrystallization. At the temperature of 1050-1150 °C, inter-pass time of 30-100 s and strain rate of 0.1-5 s?1, the static recrystallization behavior is obvious. In addition, the kinetics of static recrystallization behavior of Z12CN13 steel has been established and the activation energy of static recrystallization is 173.030 kJ/mol. The substructure and precipitates have been studied by TEM. The results reveal that the nucleation mode is bulging at grain boundary. Undissolved precipitates such as MoNi3 and Fe3C have a retarding effect on the recrystallization kinetics. The effect is weaker than the accelerating effect of deformation temperature.  相似文献   

14.
基于等温恒应变速率压缩实验,对300M钢在变形温度为850℃~1180℃、应变速率为0.01s-1~10s-1条件下的热变形行为,及其动态再结晶动力学行为进行研究。结果表明,当ln Z>33.37时,300M钢应力-应变曲线呈双峰不连续动态再结晶型,热变形过程发生两轮动态再结晶;当ln Z<33.37时,300M钢的应力-应变曲线呈单峰不连续动态再结晶型,热变形过程仅发生一轮动态再结晶。根据压缩实验结果,分别构建300M钢第一轮动态再结晶和第二轮动态再结晶的峰值应变、临界应变、平均晶粒尺寸和体积分数动力学模型。  相似文献   

15.
Double-deformation isothermal tests and multipass continuous-cooling hot torsion tests were used to study the evolution of austenite microstructures during isothermal and non-isothermal hot deformation of an Nb microalloyed steel. These tests, coupled with microstructural characterization, have verified that the no-recrystallization temperature (T nr ) corresponds roughly to the temperature where recrystallization starts to be incomplete during rolling. An accurate method to estimate the recrystallized fraction during hot rolling based on stress-strain data, and which does not require metallographic studies, is proposed. The results of this method have been successfully compared to metallographic measurements, the values of non-isothermal fractional softening and the accumulated stress measured in the plots of mean flow stress (MFS) versus the inverse of temperature. A remarkable austenite grain refinement occurs in the first hot rolling passes after reheating. The correlation of isothermal and continuous cooling tests is better understood if the effect of grain size on recrystallization and precipitation is taken into account.  相似文献   

16.
A computer model that describes the evolution of microstructures during the hot finishing rolling of SS400 steel has been proposed. It has been found that the microstructure strongly depends on processing of materials and on their parameters,which affected the history of the thermomechanical variables,such as temperature,strain,and strain rate. To investigate the microstructural evolutions during the hot finishing rolling process,the rigid-thermoviscoplastic finite element method(FEM) has been combined with dynamic recrystallization,static recrystallization,and grain growth models. The simulation results show a good agreement with those from the prediction software online.  相似文献   

17.
《Acta Materialia》2003,51(10):3005-3018
Static, isothermal recrystallization at a temperature of 400 °C was studied by means of quantitative microscopy in a well-characterized, commercial purity aluminum-alloy AA1050 that had undergone plane strain deformation at 400 °C at a strain rate of 2.5 s−1 to an equivalent strain of 2. The microstructural properties, Vv, the volume fraction recrystallized, Sv, the interfacial area density separating recrystallizing grains from deformed volumes and <λ>, the mean recrystallized grain free length, were all measured stereologically as a function of time and the reaction kinetics, microstructural path, grain boundary migration rates and nucleation characteristics of the recrystallization were quantified experimentally. The results are compared to a recently published study of recrystallization in the identical pre-deformation starting material but after room temperature deformation by rolling to a comparable strain. Recrystallization kinetics differences between the two materials include: the hot deformed material had a higher, by at least 120 °C, recrystallization temperature; had many fewer recrystallization nuclei leading to a factor of about three larger as-recrystallized grain size; lacked a Cahn-Hagel growth rate transient like the cold deformed exhibited; and required a slightly different impingement model for the microstructural path analysis. In both cases particle stimulated nucleation (PSN) was thought to be operative but it seemed to be much more potent after cold deformation.  相似文献   

18.
The effect of different relative amounts of hot and cold deformation on the P {0 1 1}4 5 5 recrystallization texture in a continuous cast Al–Mn–Mg aluminum alloy was investigated by X-ray diffraction. The results show that at a given total rolling strain the sheet with a high hot rolling strain exhibits a significantly stronger P texture than the sheet with a low hot rolling strain. Hot deformation strongly promotes the formation of the P texture during recrystallization annealing.  相似文献   

19.
张楚博  米振莉  毛小玲  徐梅 《轧钢》2018,35(1):17-22
采用Gleeble-3500热模拟试验机对超高强DP980钢进行热压缩试验,研究其在变形温度为900~1 200℃、应变速率为0.05~30s~(-1)条件下的动态再结晶行为,分析了变形温度和应变速率对真应力-真应变曲线的影响。结果表明:超高强DP980钢在变形过程中,存在动态再结晶和动态回复两种软化机制,且随着温度的升高和应变速率的降低,临界应变越小,动态再结晶越容易发生;同时,得到了发生动态再结晶时的形变激活能,建立了峰值应变模型、动态再结晶临界应力模型和动态再结晶动力学模型。  相似文献   

20.
基于ABAQUS软件平台,建立了42CrMo大型环形铸坯热辗扩三维热力耦合有限元模型,模拟了铸坯热辗扩过程中应变场和温度场,研究了初始辗扩温度对辗扩力的影响规律.模拟结果表明在环形铸坯热辗扩过程中:①铸坯等效应变呈阶梯状上升,内外表面应变大于中间层应变;在稳定成形阶段,沿环件径向方向,由于导向辊与芯辊直径差异,导致环件最大平均等效应变可能出现在环件内表面也可能出现在环件外表面;②初始阶段,变形区与成形辊接触处温度降低较快,非变形区温度变化不是很明显;随着辗扩的进行,芯部温度逐渐上升,边缘温度低,温度分布不均匀;③随着铸坯初始辗扩温度升高,平均辗扩力明显下降,但随时间变化趋势保持一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号