首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Adult-derived hippocampal progenitors generate neurons, astrocytes, and oligodendrocytes in vitro and following grafting into the adult brain. Although these progenitors have a considerable capacity for in vitro self renewal, it is not known if each lineage is generated by separate committed precursors or by multipotent stem cells. By genetic marking, we have followed individual cells through the process of proliferative expansion, commitment, and differentiation. All three lineages are generated by single marked cells and the relative proportions of each lineage can be strongly influenced by environmental cues. Differentiation is accompanied by a characteristic progression of lineage-specific markers and can be potentiated by retinoic acid, elevated cyclic AMP, or neurotrophic factors. The ability to genetically mark and clone normal diploid hippocampal progenitors provides the first definitive evidence that multipotent neural stem cells exist outside of the adult striatal subventricular zone and supports the hypothesis that FGF-2-responsive neural stem cells may be broadly distributed in the adult brain.  相似文献   

2.
Paneth cells represent one of the four major epithelial lineages in the mouse small intestine. It is the only lineage that migrates downward from the stem-cell zone located in the lower portion of the crypt of Lieberkühn to the crypt base. Mature Paneth cells release growth factors, digestive enzymes, and antimicrobial peptides from their apical secretory granules. Some of these factors may affect the crypt stem cell, its transit-cell descendants, differentiating villus-associated epithelial lineages, and/or the gut microflora. We used single and multilabel immunocytochemical methods to study Paneth cell differentiation during and after completion of gut morphogenesis in normal, gnotobiotic, and transgenic mice as well as in intestinal isografts. This lineage emerges coincident with cytodifferentiation of the fetal small intestinal endoderm, formation of crypts from an intervillus epithelium, and establishment of a stem-cell hierarchy. The initial differentiation program involves sequential expression of cryptdins, a phospholipase A2 (enhancing factor), and lysozyme. A dramatic increase in Paneth cell number per crypt occurs during postnatal days 14-28, when crypts proliferate by fission. Accumulation of fucosylated and sialylated glycoconjugates during this period represents the final evolution of the lineage's differentiation program. Establishment of this lineage is not dependent upon instructive interactions from the microflora. Transgenic mice containing nucleotides -6500 to +34 of the Paneth cell-specific mouse cryptdin 2 gene linked to the human growth hormone gene beginning at its nucleotide +3 inappropriately express human growth hormone in a large population of proliferating and nonproliferating cells in the intervillus epithelium up to postnatal day 5. Transgene expression subsequently becomes restricted to the Paneth cell lineage in the developing crypt. Cryptdin 2 nucleotides -6500 to +34 should be a useful marker of crypt morphogenesis and a valuable tool for conducting gain-of-function or loss-of-function experiments in Paneth cells.  相似文献   

3.
Any epithelial portion of a normal mouse mammary gland can reproduce an entire functional gland when transplanted into an epithelium-free mammary fat pad. Mouse mammary hyperplasias and tumors are clonal dominant populations and probably represent the progeny of a single transformed cell. Our study provides evidence that single multipotent stem cells positioned throughout the mature fully developed mammary gland have the capacity to produce sufficient differentiated progeny to recapitulate an entire functional gland. Our evidence also demonstrates that these stem cells are self-renewing and are found with undiminished capacities in the newly regenerated gland. We have taken advantage of an experimental model where mouse mammary tumor virus infects mammary epithelial cells and inserts a deoxyribonucleic acid copy(ies) of its genome during replication. The insertions occur randomly within the somatic genome. CzechII mice have no endogenous nucleic acid sequence homology with mouse mammary tumor virus; therefore all viral insertions may be detected by Southern analysis provided a sufficient number of cells contain a specific insertional event. Transplantation of random fragments of infected CzechII mammary gland produced clonal-dominant epithelial populations in epithelium-free mammary fat pads. Serial transplantation of pieces of the clonally derived outgrowths produced second generation glands possessing the same viral insertion sites providing evidence for self-renewal of the original stem cell. Limiting dilution studies with cell cultures derived from third generation clonal outgrowths demonstrated that three multipotent but distinct mammary epithelial progenitors were present in clonally derived mammary epithelial populations. Estimation of the potential number of multipotent epithelial cells that may be evolved from an individual mammary-specific stem cell by self-renewal is in the order of 10(12)-10(13). Therefore, one stem cell might easily account for the renewal of mammary epithelium over several transplant generations.  相似文献   

4.
Individual gastric glands of the stomach are composed of cells of different phenotypes. These are derived from multipotent progenitor stem cells located at the isthmus region of the gland. Previous cell lineage analyses suggest that gastric glands, as in the colon and small intestine, are invariably monoclonal by adult stages. However, little is known about the ontogenetic progression of glandular clonality in the stomach. To examine this issue, we employed an in situ cell lineage marker in female mice heterozygous for an X-linked transgene. We found that stomach glands commence development as polyclonal units, but by adulthood (6 weeks), the majority progressed to monoclonal units. Our analysis suggests that at least three progenitor cells are required to initiate the development of individual gastric glands if they are analyzed just after birth. Hence, unlike the colon and small intestine, stomachs showed a significant fraction (10-25%) of polyclonal glands at adult stages. We suggest that these glands persist from polyclonal glands present in the embryonic stomach and hypothesize that they represent a subpopulation of glands with larger numbers of self-renewing stem cells.  相似文献   

5.
Natural killer (NK) cells mediate MHC-unrestricted cytolysis of virus-infected cells and tumor cells. In the adult mouse, NK cells are bone marrow-derived lymphocytes that mature predominantly in extrathymic locations but have also been suggested to share a common intrathymic progenitor with T lymphocytes. However, mature NK cells are thought to be absent in mouse fetal ontogeny. We report the existence of thymocytes with a mature NK cell phenotype (NK1.1+/CD117-) as early as day 13 of gestation, approximately 3 days before the appearance of CD4+/CD8+ cells in T lymphocyte development. These mature fetal thymic NK cells express genes associated with NK cell effector function and, when freshly isolated, display MHC-unrestricted cytolytic activity in vitro. Moreover, the capacity of fetal thymic NK cells for sustained growth both in vitro and in vivo, in addition to their close phenotypic resemblance to early precursor thymocytes, confounds previous assessments of NK lineage precursor function. Thus, mature NK cells may have been inadvertently included in previous attempts to identify multipotent and bipotent precursor thymocytes. These results provide the first evidence of functional NK lymphocytes in mouse fetal ontogeny and demonstrate that NK cell maturation precedes alpha beta T cell development in the fetal thymus.  相似文献   

6.
7.
Notch is a transmembrane receptor that controls cell fate decisions in Drosophila and whose role in mammalian cell fate decisions is beginning to be explored. We are investigating the role of Notch in a well-studied mammalian cell fate decision: the choice between the CD8 and CD4 T cell lineages. Here we report that expression of an activated form of Notch1 in developing T cells of the mouse leads to both an increase in CD8 lineage T cells and a decrease in CD4 lineage T cells. Expression of activated Notch permits the development of mature CD8 lineage thymocytes even in the absence of class I major histocompatability complex (MHC) proteins, ligands that are normally required for the development of these cells. However, activated Notch is not sufficient to promote CD8 cell development when both class I and class II MHC are absent. These results implicate Notch as a participant in the CD4 versus CD8 lineage decision.  相似文献   

8.
Several studies have shown that cultured rat liver epithelial cells transform spontaneously after chronic maintenance in a confluent state in vitro. In the present study, multiple independent lineages of low-passage WB-F344 rat liver epithelial stem-like cells were initiated and subjected in parallel to selection for spontaneous transformation to determine whether spontaneous acquisition of tumorigenicity was the result of events (genetic or epigenetic) that occurred independently and stochastically, or reflected the expression of a pre-existing alteration within the parental WB-F344 cell line. Temporal analysis of the spontaneous acquisition of tumorigenicity by WB-F344 cells demonstrated lineage-specific differences in the time of first expression of the tumorigenic phenotype, frequencies and latencies of tumor formation, and tumor differentiations. Although spontaneously transformed WB-F344 cells produced diverse tumor types (including hepatocellular carcinomas, cholangiocarcinomas, hepatoblastomas, and osteogenic sarcomas), individual lineages yielded tumors with consistent and specific patterns of differentiation. These results provide substantial evidence that the stochastic accumulation of independent transforming events during the selection regimen in vitro were responsible for spontaneous neoplastic transformation of WB-F344 cells. Furthermore, cell lineage commitment to a specific differentiation program was stable with time in culture and with site of transplantation. This is the first report of a cohort of related, but independent, rat liver epithelial cell lines that collectively produce a spectrum of tumor types but individually reproduce a specific tumor type. These cell lines will provide valuable reagents for investigation of the molecular mechanisms involved in the differentiation of hepatic stem-like cells and for examination of potential causal relationships in spontaneously transformed rat liver epithelial cell lines between molecular/cellular alterations and the ability to produce tumors in syngeneic animals.  相似文献   

9.
10.
11.
12.
The signals that direct differentiation of T cells to the CD4 or CD8 lineages in the thymus remain poorly understood. Although it has been relatively easy to direct differentiation of CD4 single positive (CD4+) cells using combinations of antibodies and pharmacological agents that mimic receptor engagements, equivalent stimuli do not induce efficient maturation of CD8+ cells. Here we report that, irrespective of the MHC-restriction specificity of the TCR, differentiation of mature CD8+ thymocytes can be induced by ligation of CD3 polypeptides on immature thymocytes with a F(ab')2 reagent (CD3fos-F(ab')2). The tyrosine phosphorylation patterns stimulated by CD3fos-F(ab')2 have been shown to resemble those delivered to mature T cells by antagonist peptides, which are known to direct positive selection of CD8+ cells, and we can show that this reagent exhibits potent antagonistic-like activity for primary T cell responses. Our results suggest a distinction in the signals that specify lineage commitment in the thymus. We present a model of thymocyte differentiation that proposes that the relative balance of signals delivered by TCR engagement and by p56lck activation is responsible for directing commitment to the CD8 or CD4 lineages.  相似文献   

13.
The effects of stem cell factor (SCF) on the subpopulations of granulocyte/macrophage colony-forming units (CFU-GM) were examined. Hematopoietic progenitor cells were enriched from normal adult bone marrow specimens by immunomagnetic beads using an anti-CD34 antibody and lineage marker antibodies for positive selection and negative selection, respectively. SCF enabled neutrophil and neutrophil/macrophage mixed progenitors to respond to granulocyte/macrophage colony-stimulating factor (GM-CSF) or interleukin 3 (IL-3) and to develop the colony and further cluster formation. The neutrophil colonies stimulated by GM-CSF or IL-3 consisted mainly of immature cells, while the colonies stimulated by granulocyte colony-stimulating factor (G-CSF) consisted of mature neutrophils irrespective of the addition of SCF. In macrophage and eosinophil lineages, SCF augmented the colony formation in the presence of GM-CSF or IL-3, whereas the enhancement of total progenitor cell growth (colonies plus clusters) was not so marked as compared with the neutrophil lineage. Time-course observation revealed that SCF could stimulate macrophage and eosinophil progenitors to form colonies rapidly. These findings indicate that SCF acts on late myeloid progenitor cells in manners different from the lineages of commitment.  相似文献   

14.
15.
16.
Embryonic lethality of thrombomodulin-deficient mice has indicated an essential role for this regulator of blood coagulation in murine development. Here, the embryonic expression pattern of thrombomodulin was defined by surveying beta-galactosidase activity in a mouse strain in which the reporter gene was placed under the regulatory control of the endogenous thrombomodulin promoter via homologous recombination in embryonic stem cells. The murine trophoblast was identified as a previously unrecognized anatomical site where TM expression is conserved between humans and mice and may exert a critical function during postimplantation development. Targeted reporter gene expression in mesodermal precursors of the endothelial cell lineage defined thrombomodulin as an early marker of vascular differentiation. Analysis of the thrombomodulin promoter in differentiating ES cells and in transgenic mice provided evidence for a disparate and cell type-specific gene regulatory control mechanism in the parietal yolk sac. The thrombomodulin promoter as defined in this study will allow the targeting of gene expression to the parietal yolk sac of transgenic mice and the initiation of investigations into the role of parietal endoderm in placental function.  相似文献   

17.
Elderly humans are at significant risk with regard to the incidence and severity of many infectious diseases and cancers. Current theory holds that these late-life vulnerabilities arise, in part, through age-related changes in immune function, particularly in the T lymphocyte lineage. Herein, we discuss how such factors as thymic involution and ongoing T cell differentiation in the peripheral tissues contribute to progressive and irreversible shifts in the state of differentiation of the mature T cell pool. We propose that, by late life, these processes yield a T cell compartment with a suboptimal balance of naive and memory T cell subsets, each with altered, subset-specific programs for cytokine gene expression. As such, the T cell compartment in late life may be more prone to immune deficiency or cytokine-mediated dysregulation in response to new or previously encountered pathogens.  相似文献   

18.
The normal prostate is, structurally and functionally, a highly complex glandular tissue in which populations of epithelial and stromal cells interact, one with the other, and are under a constant state of proliferation, differentiation, elimination and selective secondary replenishment so that functional integrity of the tissue is maintained. The ability of normal prostatic tissue to maintain its structure and function is dependent upon retention of cells, generally regarded as 'stem cells', which are able to respond by proliferation and selective differentiation within a wide range of phenotypic alternatives. With respect to cells in the epithelial compartment, replenishment is possible at several levels from within distinct pathways of normal cellular differentiation. It is now appreciated that fully differentiated prostatic epithelial cells retain a far greater degree of phenotypic 'plasticity' than was earlier apparent from morphological examination of the intact tissue. This inherent plasticity, coupled with the ability of the intact tissue to respond to diverse environmental (particularly humoral) stimuli by regenerating a wide and divergent spectrum of functional prostatic epithelial phenotypes is its strength--but also its weakness. Disturbance and distortion of the homeostatic regulatory mechanisms, whether physical or humoral, which control the normal sequence of epithelial proliferation, differentiation and elimination exposes these cells, particularly multipotent 'stem cells', to an increased probability of genetic change, thus resulting in either transient, or permanent, neoplastic transformation.  相似文献   

19.
B cell development is influenced by interactions between B cell progenitors and stromal cells. The precise mechanisms by which these interactions regulate B cell differentiation are currently unknown. Flt3 ligand (FL) is a growth factor which stimulates the proliferation of stem cells and early progenitors. Mice deficient for the FLT3 receptor exhibit severe reductions in early B lymphoid progenitors. We have previously described a clonal assay in vitro which allows us to follow the entire B cell differentiation pathway from uncommitted progenitors to mature, immunoglobulin-secreting plasma cells. The growth factor combination of interleukin (IL)-11, mast cell growth factor (MGF) and IL-7 was shown to maintain the differentiation of these hematopoietic precursors into B cell progenitors capable of giving rise to functionally mature B cells in secondary cultures. Here, we show that FL in combination with IL-11 and IL-7 is sufficient to support the differentiation of uncommitted progenitors from day 10 yolk sac (AA4.1+) or day 12 fetal liver (AA4.1+ B220- Mac-1- Sca-1+) into the B lineage. The frequency of B cell progenitors obtained in these conditions was similar, if not better, than the frequency of B cell precursors that arose when cultured in IL-11+MGF+IL-7. Furthermore, the growth factor combination of IL-11+FL+ IL-7 was able to maintain the potential of bipotent precursors giving rise to both the B and myeloid lineages in secondary cultures. We also show that FL synergizes with IL-7 in the proliferation of committed B220+ pro-B cells and may contribute to the maintenance of an earlier pro-B cell population. Together, these results show that FL is important in supporting the differentiation and proliferation of early B cell progenitors in vitro.  相似文献   

20.
Proliferation, migration-associated differentiation, and cell death occur continuously and in a spatially well-organized fashion along the crypt-villus axis of the mouse small intestine, making it an attractive system for studying how these processes are regulated and interrelated. A pathway for producing glycoconjugates was engineered in adult FVB/N transgenic mice by expressing a human alpha 1,3/4-fucosyltransferase (alpha 1,3/4-FT; EC 2.4.1.65) along the length of this crypt-villus axis. The alpha 1,3/4-FT can use lacto-N-tetraose or lacto-neo-N-tetraose core chains to generate Lewis (Le) blood group antigens Le(a) or Le(x), respectively, and H type 1 or H type 2 core chains to produce Leb and Le(y). Single- and multilabel immunohistochemical studies revealed that expression of the alpha 1,3/4-FT results in production of Le(a) and Leb antigens in both undifferentiated proliferated crypt cells and in differentiated postmitotic villus-associated epithelial cells. In contrast, Le(x) antigens were restricted to crypt cells. Villus enterocytes can be induced to reenter the cell cycle by expression of simian virus 40 tumor antigen under the control of a promoter that only functions in differentiated members of this lineage. Bitransgenic animals, generated from a cross of FVB/N alpha 1,3/4-FT with FVB/N simian virus 40 tumor antigen mice, expand the range of Le(x) expression to include villus-associated enterocytes that have reentered the cell cycle. Thus, the fucosylations unveil a proliferation-dependent switch in oligosaccharide production, as defined by a monoclonal antibody specific for the Le(x) epitope. These findings show that genetic engineering of oligosaccharide biosynthetic pathways can be used to define markers for entry into, or progression through, the cell cycle and to identify changes in endogenous carbohydrate metabolism that occur when proliferative status is altered in a manner that is not deleterious to the system under study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号