首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4978篇
  免费   201篇
  国内免费   7篇
电工技术   28篇
化学工业   536篇
金属工艺   40篇
机械仪表   68篇
建筑科学   91篇
矿业工程   7篇
能源动力   88篇
轻工业   279篇
水利工程   29篇
石油天然气   7篇
无线电   288篇
一般工业技术   611篇
冶金工业   2692篇
原子能技术   18篇
自动化技术   404篇
  2023年   32篇
  2022年   23篇
  2021年   81篇
  2020年   62篇
  2019年   92篇
  2018年   101篇
  2017年   77篇
  2016年   91篇
  2015年   71篇
  2014年   109篇
  2013年   168篇
  2012年   154篇
  2011年   214篇
  2010年   140篇
  2009年   134篇
  2008年   171篇
  2007年   153篇
  2006年   119篇
  2005年   98篇
  2004年   77篇
  2003年   70篇
  2002年   61篇
  2001年   26篇
  2000年   34篇
  1999年   93篇
  1998年   734篇
  1997年   405篇
  1996年   298篇
  1995年   201篇
  1994年   157篇
  1993年   158篇
  1992年   45篇
  1991年   54篇
  1990年   60篇
  1989年   47篇
  1988年   49篇
  1987年   47篇
  1986年   42篇
  1985年   47篇
  1984年   25篇
  1983年   17篇
  1982年   20篇
  1981年   17篇
  1980年   20篇
  1979年   16篇
  1978年   17篇
  1977年   46篇
  1976年   136篇
  1975年   14篇
  1971年   13篇
排序方式: 共有5186条查询结果,搜索用时 15 毫秒
1.
2.
Cell encapsulation within hydrogel droplets is transforming what is feasible in multiple fields of biomedical science such as tissue engineering and regenerative medicine, in vitro modeling, and cell-based therapies. Recent advances have allowed researchers to miniaturize material encapsulation complexes down to single-cell scales, where each complex, termed a single-cell microgel, contains only one cell surrounded by a hydrogel matrix while remaining <100 μm in size. With this achievement, studies requiring single-cell resolution are now possible, similar to those done using liquid droplet encapsulation. Of particular note, applications involving long-term in vitro cultures, modular bioinks, high-throughput screenings, and formation of 3D cellular microenvironments can be tuned independently to suit the needs of individual cells and experimental goals. In this progress report, an overview of established materials and techniques used to fabricate single-cell microgels, as well as insight into potential alternatives is provided. This focused review is concluded by discussing applications that have already benefited from single-cell microgel technologies, as well as prospective applications on the cusp of achieving important new capabilities.  相似文献   
3.
This study assessed the performance of modeling approaches to estimate personal exposure in Kenyan homes where cooking fuel combustion contributes substantially to household air pollution (HAP). We measured emissions (PM2.5, black carbon, CO); household air pollution (PM2.5, CO); personal exposure (PM2.5, CO); stove use; and behavioral, socioeconomic, and household environmental characteristics (eg, ventilation and kitchen volume). We then applied various modeling approaches: a single-zone model; indirect exposure models, which combine person-location and area-level measurements; and predictive statistical models, including standard linear regression and ensemble machine learning approaches based on a set of predictors such as fuel type, room volume, and others. The single-zone model was reasonably well-correlated with measured kitchen concentrations of PM2.5 (R2 = 0.45) and CO (R2 = 0.45), but lacked precision. The best performing regression model used a combination of survey-based data and physical measurements (R2 = 0.76) and a root mean-squared error of 85 µg/m3, and the survey-only-based regression model was able to predict PM2.5 exposures with an R2 of 0.51. Of the machine learning algorithms evaluated, extreme gradient boosting performed best, with an R2 of 0.57 and RMSE of 98 µg/m3.  相似文献   
4.
The mechanical behavior of ZrB2-MoSi2 ceramics made of ZrB2 powder with three different particle sizes and MoSi2 additions from 5 to 70 vol% was characterized up to 1500 °C. Microhardness (12–17 GPa), Young’s modulus (450–540 GPa) and shear modulus (190–240 GPa) decreased with both increasing MoSi2 content and with decreasing ZrB2 grain size. Room temperature fracture toughness was unaffected by grain size or silicide content, whilst at 1500 °C in air it increased with MoSi2 and ZrB2 grain size, from 4.1 to 8.7 MPa m½. Room temperature strength did not trend with MoSi2 content, but increased with decreasing ZrB2 grain size from 440 to 590 MPa for the largest starting particle size to 700–800 MPa for the finest due to the decreasing size of surface grain pullout. At 1500 °C, flexure strength for ZrB2 with MoSi2 contents above 25 vol% were roughly constant, 400–450 MPa, whilst for lower content strength was controlled by oxidation damages. Strength for compositions made using fine and medium ZrB2 powders increased with increasing MoSi2 content, 250–450 MPa. Ceramics made with coarse ZrB2 displayed the highest strengths, which decreased with increasing MoSi2 content from 600 to 450 MPa.  相似文献   
5.
Upholstered furniture is often manufactured with polyurethane foam (PUF) containing flame retardants (FRs) to prevent the risk of a fire and/or to meet flammability regulations, however, exposure to certain FRs and other chemicals have been linked to adverse health effects. This study developed a new methodology for evaluating volatile organic compound (VOC) and FR exposures to users of upholstered furniture by simulating use of a chair in a controlled exposure chamber and assessing the health significance of measured chemical exposure. Chairs with different fire-resistant technologies were evaluated for VOC and FR exposures via inhalation, ingestion, and dermal contact exposure routes. Data show that VOC exposure levels are lower than threshold levels defined by the US and global indoor air criteria. Brominated FRs were not detected from the studied chairs. The organophosphate FRs added to PUF were released into the surrounding air (0.4 ng/m3) and as dust (16 ng/m2). Exposure modeling showed that adults are exposed to FRs released from upholstered furniture mostly by dermal contact and children are exposed via dermal and ingestion exposure. Children are most susceptible to FR exposure/dose (2 times higher average daily dose than adults) due to their frequent hand to mouth contact.  相似文献   
6.
In this paper, we first re-examine the previous protocol of controlled quantum secure direct communication of Zhang et al.’s scheme, which was found insecure under two kinds of attacks, fake entangled particles attack and disentanglement attack. Then, by changing the party of the preparation of cluster states and using unitary operations, we present an improved protocol which can avoid these two kinds of attacks. Moreover, the protocol is proposed using the three-qubit partially entangled set of states. It is more efficient by only using three particles rather than four or even more to transmit one bit secret information. Given our using state is much easier to prepare for multiqubit states and our protocol needs less measurement resource, it makes this protocol more convenient from an applied point of view.  相似文献   
7.
A systematic, diversity-oriented synthesis approach was employed to access a natural product-inspired flavonoid library with diverse chemical features, including chemical properties, scaffold, stereochemistry, and appendages. Using Cell Painting, the effects of these diversity elements were evaluated, and multiple chemical features that predict biological performance diversity were identified. Scaffold identity appears to be the dominant predictor of performance diversity, but stereochemistry and appendages also contribute to a lesser degree. In addition, the diversity of chemical properties contributed to performance diversity, and the driving chemical property was dependent on the scaffold. These results highlight the importance of key chemical features that may inform the creation of small-molecule, performance-diverse libraries to improve the efficiency and success of high-throughput screening campaigns.  相似文献   
8.
A low temperature co-fired ceramic (LTCC) material system has been used to develop a protype field emission cathode structure for use in an experimental magnetron oscillator. The structure is designed for used with 30 gated field emission array (GFEA) die electrically connected through silver metal traces and electrical vias. To approximate a cylinder, the cathode structure (48 mm long and 13.7 mm in diameter) is comprised of 10 faceted plates which cover the GFEA dies. Slits in the facet plates allow electron injection. The GFEA die (3 mm × 8 mm) are placed in axial columns of 3 and spaced azimuthally around a cylindrical support structure in a staggered configuration resulting in 10 azimuthal locations. LTCC manufacturing techniques were developed in order to fabricate the newly designed cathode with seven layers wrapped to form the cylinder with electrical traces and vias. Two different cathode wrapping techniques and two different via filling techniques were studied and compared. Two different facet plate manufacturing techniques were studied. Finally, four different support stand configurations for firing the cylindrical structure were also compared with a square post stand having the best circularity and linearity measurements of the fired structure.  相似文献   
9.
The enzyme lumazine synthase (LS) has been engineered to self-assemble into hollow-shell structures that encapsulate unnatural cargo proteins through complementary electrostatic interactions. Herein, we show that a negatively supercharged LS variant can also form organic–inorganic hybrids with gold nanomaterials. Simple mixing of LS pentamers with positively charged gold nanocrystals in aqueous buffer spontaneously affords protein-shelled gold cores. The procedure works well with differently sized and shaped gold nanocrystals, and the resulting shelled complexes exhibit dramatically enhanced colloidal stability over a wide range of pH (4.0–10.0) and at high ionic strength (up to 1 m NaCl). They are even stable over days upon dilution in buffer. Self-assembly of engineered LS shells in this way offers an easy and attractive alternative to commonly used ligand-exchange methods for stabilizing inorganic nanomaterials.  相似文献   
10.
In conventional flash sintering, the current rises nonlinearly to a set current limit, accompanied by a spike in the power density. This sudden power spike may cause hot spot formation, in which current preferentially channels through a small area, causing localized melting while other areas remain unsintered. By using a controlled current ramp early on the sudden power spike can be avoided. In addition, by changing the ramp rate material properties such as porosity, grain size and conductivity can be tuned.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号