首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 223 毫秒
1.
申振  戴亚堂  张欢  王伟  马欢  欧青海 《精细化工》2012,(12):1181-1185,1211
纳米线型导电聚合物是一种具有良好应用前景的超级电容器电极材料,该文用简易的原位化学氧化法制备了微孔炭/聚苯胺纳米线(MC/PANI)复合材料,并以此复合材料为活性物质制备工作电极,在1 mol/L H2SO4中,通过循环伏安、交流阻抗和恒流充放电技术考察了其电化学电容性能,结果表明,在0.2 A/g的电流密度下,MC/PANI电极首次充放电比电容可达到329 F/g,高于PANI电极的259 F/g,且MC/PANI电极电荷传递电阻(Rct)小于MC和PANI,可见纳米线型PANI可加强电极材料的电化学性能。  相似文献   

2.
:纳米线型导电聚合物是一种具有良好应用前景的电容器电极材料,本论文中,用简易的原位化学氧化法制备了微孔碳/聚苯胺纳米线(MC/PANI)复合材料,并以此复合材料为活性物质制备工作电极,在1 mol/L H2SO4中,通过循环伏安、交流阻抗和恒流充放电技术研究了其电化学电容性能,研究结果表明:在0.2 A/g的电流密度下,MC/PANI电极首次充放电比电容可达到329 F/g, 高于PANI电极的259 F/g,且MC/PANI电极电荷传递电阻(Rct)小于MC和PANI,可见纳米线型PANI可加强电极材料的电化学性能。  相似文献   

3.
《应用化工》2022,(3):651-655
通过原位聚合法合成CB/PANI/MnO_2复合电极材料,对电极材料进行循环伏安、交流阻抗和恒电流充放电等电化学性能测试;通过循环伏安法(CV)测试,得出高锰酸钾添加量为0.3 g时,CB/PANI/MnO_2复合电极材料的电化学性能效果最好,在5 mV/s的扫描速度下其比容量可达到190 F/g;高锰酸钾添加量为0.3 g时,CB/PANI/MnO_2复合电极材料在0.5 A/g的电流密度下,电极材料的质量比电容高达354 F/g。  相似文献   

4.
通过原位聚合法合成CB/PANI/MnO_2复合电极材料,对电极材料进行循环伏安、交流阻抗和恒电流充放电等电化学性能测试;通过循环伏安法(CV)测试,得出高锰酸钾添加量为0.3 g时,CB/PANI/MnO_2复合电极材料的电化学性能效果最好,在5 mV/s的扫描速度下其比容量可达到190 F/g;高锰酸钾添加量为0.3 g时,CB/PANI/MnO_2复合电极材料在0.5 A/g的电流密度下,电极材料的质量比电容高达354 F/g。  相似文献   

5.
阚侃  付东  王珏  任滨侨  张伟君  张晓臣 《精细化工》2019,36(10):2060-2067
以交联状氮掺杂碳纳米纤维(CNF)为碳骨架,采用插层辅助原位氧化聚合法使聚苯胺(PANI)均匀地在CNF表面包覆生长,制备了交联状聚苯胺包覆碳纤维(PANI/CNF)复合纳米线。采用TEM、SEM、TG、FTIR、Raman、XRD、XPS和BET对PANI/CNF复合纳米线的形貌和结构进行了表征。通过CV、EIS和GCD测试了PANI/CNF复合纳米线的电容特性。结果表明:PANI/CNF复合纳米线相互连通,表面呈荆棘状,具有多级空间结构。CNF质量分数为40%的PANI/CNF40复合纳米线电极在电流密度为1.0 A/g时,比电容达到820.31 F/g。电流密度增加到20.0 A/g时,比电容保留率为74.8%。在10.0 A/g时,经过2000次充放电循环后电极的比电容保持率达到89.7%。  相似文献   

6.
利用高导电性的氮化钛纳米线作为聚苯胺的生长基质,有效减少电极材料的电荷传输电阻,提升聚苯胺的超级电容储能性能。以碳纤维作为柔性基底,采用晶种辅助水热结合电化学聚合法制备了柔性聚苯胺/氮化钛纳米线电极材料(PANI/Ti N),电极材料呈现高度有序的同轴核壳纳米线结构,且纳米线之间彼此分离,有利于电解液离子的传输,提升储能性能。电流密度为1 A/g时,比电容为403 F/g;电流密度从0.5 A/g增加到10.0 A/g时,比电容保持率为初始容量的53.4%,电流密度为5 A/g时,循环充放电1 000次后PANI/Ti N的电容保持率为79.1%,与PANI相比均有较大提升,表明PANI/Ti N具有较好的电化学储能性质。以PANI/Ti N电极材料为电极构建柔性全固态对称型超级电容器(PANI/Ti N//PANI/Ti N)考察其应用性。PANI/Ti N//PANI/Ti N柔性超级电容器在电流密度为1 A/g时,比电容可达100.2 F/g,且在不同角度弯曲后比电容无明显衰减。当功率密度为500 W/kg时,能量密度可达50.1 W·h/kg,且1个单元的该超级电容器可驱动红色...  相似文献   

7.
采用原位聚合法制备不同摩尔比的PANI/MoS_2纳米复合材料。通过X射线衍射、红外光谱、透射电镜等手段,对所制备的材料进行了结构和微观形貌的表征,结果表明:所制备的聚苯胺呈现棒状纳米纤维包覆在卷曲的纳米鳞片MoS_2片层上形成了PANI/MoS_2纳米复合材料。通过循环伏安法、恒流充放电等测试手段对材料的电化学性能进行了研究,结果表明:在不同电流密度下PANI∶MoS_2=1∶0.1的二元复合物比电容明显高于纯聚苯胺,在1 A/g时PANI∶MoS_2=1∶0.1的二元复合物的比电容值可达942.5 F/g,相比于同电流密度下的PANI的400.5 F/g的高出一倍。表明适量的MoS_2的掺入有助于提高PANI电极材料的电化学电容特性。  相似文献   

8.
用化学沉淀法在活性炭(AC)表面和微孔内掺杂不同量的氢氧化镍,制备了氢氧化镍-活性炭[Ni(OH)2-AC]复合材料. 用X射线衍射(XRD)和氮气吸附等温线等对活性炭和复合材料进行表征,结果表明,所制材料为b-Ni(OH)2-AC复合材料. 对不同掺杂量的b-Ni(OH)2-AC复合材料的电化学性能进行了研究,循环伏安、恒流充放电实验表明,少量氢氧化镍掺入活性炭表面和微孔中,所得材料的比电容较活性炭有所提高,并具有良好的充放电性能;当氢氧化镍的掺入量为6%(w)时,所制备的超级电容器单电极表现出优良的电化学性能. 以活性炭电极作负极,复合材料作正极制成复合型超级电容器,循环性能测试发现,掺入6%(w)氢氧化镍的复合材料制成的Ni(OH)2-AC/AC复合型超级电容器比电容高达330.7 F/g,比活性炭(AC/AC)超级电容器比电容(245.6 F/g)提高了34.6%,且Ni(OH)2-AC/AC复合型超级电容器具有更好的循环充放电性能.  相似文献   

9.
李瑞  谢芳霞  朱巧霞  陈露  简选 《化工进展》2021,40(11):6211-6218
通过直接电化学法,本文利用MXene表面官能团的诱导能力,在外加电场的作用下,将苯胺单体与MXene共同修饰在不锈钢电极表面,成功制得具有三维结构的MXene/聚苯胺复合电极材料。采用SEM、XRD、XPS、FTIR和Raman光谱对复合电极材料的表面形貌、物相结构和组成进行了表征,并在1mol/L H2SO4中详细研究了该电极材料的电容性能。结果表明,得益于MXene的掺杂,MXene/聚苯胺复合电极表现出较好的电子传导能力和优异的电容性能,在10mV/s的扫描速率下电容可达417F/g,当扫描速率增至200mV/s时,其电容保持率为52%,比纯PANI电极高31%。该复合电极材料具有良好的循环稳定性,在1.0A/g的电流密度下循环2000次后电容保持率可维持在83.4%。此项研究工作可为三维MXene复合材料的构建提供设计思路。  相似文献   

10.
本文在2.3 V电压、30 mA电流、120 s沉积时间条件下,采用控电位电沉积方法在泡沫镍基体上沉积Co(OH)_2制备了复合电极材料并研究了其超电容性能。结果表明:所获得的复合电极材料表面为纳米片层状Co(OH)_2,且保留了泡沫镍的三维网状结构。这一结构促进了电极活性物质与电解液之间的充分接触以及离子在电极体相中的吸附与脱附,使复合材料具有优异的超电容特性,比电容值高达975.8 F/g(50 mV/s),内阻仅为0.74Ω。  相似文献   

11.
Composite materials containing 20 wt.% of multiwalled carbon nanotubes (MWNTs) and 80 wt.% of chemically formed conducting polymers (ECP) as polyaniline (PANI) and polypyrrole (PPy) have been prepared and used for supercapacitor electrodes. The well conducting properties of MWNTs and their available mesoporosity allow a good charge propagation in the composites. Moreover, due to the good resiliency of MWNTs, an excellent stability of the supercapacitor electrodes is observed. It has been shown that the capacitance values for the composites strongly depend on the cell construction. In the case of three electrode cells, extremely high values can be found from 250 to 1100 F/g, however in the two electrode cell much smaller specific capacitance values of 190 F/g for PPy/MWNTs and 360 F/g for PANI/MWNTs have been measured. It highlights the fact that only two-electrode cells allow a good estimation of materials performance in electrochemical capacitors. The applied voltage was found to be the key factor influencing the specific capacitance of nanocomposites. For operating each electrode in its optimal potential range, asymmetric capacitors have been built with PPy/MWNTs as negative and PANI/MWNTs as positive electrodes giving capacitance values of 320 F/g per electrode material.  相似文献   

12.
A series of polyaniline/carbon nanotube array (PANI/CNTA) composite electrodes are prepared by electrodeposition of PANI onto CNTA electrodes by 100-500 cyclic voltammetry (CV) cycles, with the aim to investigate the influence of microstructure on the capacitive performance of PANI/CNTA composites. The morphology of PANI/CNTA composites varies remarkably with the CV cycles of electrodeposition. The optimum condition is obtained for the PANI/CNTA composite prepared by 100 CV cycles, corresponding to the highest specific capacitance, best rate performance, and longest cycle life, which are much better than that of activated carbon fiber cloth, the PANI electrodeposited on stainless steel substrate, and CNTA electrode. The forming process of the microstructure and its influence on the capacitive performance of PANI/CNTA composites are presented in this paper.  相似文献   

13.
PANI/SWCNT composites were prepared by electrochemical polymerisation of polyaniline onto SWCNTs and their capacitive performance was evaluated by means of cyclic voltammetry and charge-discharge cycling in 1 M H2SO4 electrolyte. The PANI/SWCNT composites single electrode showed much higher specific capacitance, specific energy and specific power than pure PANI and SWCNTs. The highest specific capacitance, specific power and specific energy values of 485 F/g, 228 W h/kg and 2250 W/kg were observed for 73 wt.% PANI deposited onto SWCNTs. PANI/SWCNT composites also showed long cyclic stability. Based upon the variations in the surface morphologies and specific capacitance of the composite, a mechanism is proposed to explain enhancement in the capacitive characteristics. The PANI/SWCNT composites have demonstrated the potential as excellent electrode materials for application in high performance supercapacitors.  相似文献   

14.
Dulse‐derived porous carbon (DDPC)–polyaniline (PANI) nanocomposites were fabricated by a method based on the in situ chemical oxidation polymerization of aniline on DDPC. The characterization of the material showed that the nano‐PANI was grown on the surface of DDPC in the form of nanosticks or nanoparticles. The DDPC–PANI nanocomposites were further used as electrode materials for energy‐storage applications. Meanwhile, the effect of the amount of aniline on the electrochemical performance of DDPC–PANI was also investigated. The results show that a maximum specific capacitance of 458 F/g was achieved for the DDPC–PANI nanocomposites; this was higher than that of the DDPC electrode (218 F/g), and the PANI electrode (318 F/g). The specific capacitance of DDPC–PANI remained 66.0% of the initial value after 5000 cycles; this was higher than that of PANI (50.5%). Finally, a device of DDPC–PANI–activated carbon (AC) was assembled with DDPC–PANI as a positive electrode, which exhibited a high energy density of 9.02 W h/kg, which was higher than that of PANI–AC device. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45776.  相似文献   

15.
利用化学氧化法原位聚合制备了聚苯胺(PANI)/氧化石墨烯(GO)接枝复合材料。透射电子显微镜表明,PANI纳米颗粒均匀地分布在GO的表面;通过UV-vis光谱证实了GO和PANI之间存在着强烈的相互作用;充放电测试表明,PANI/GO纳米复合材料具有良好的电荷储存特性,最高比电容可达575 F/g。由于与GO之间的化学结合作用,PANI的充放电循环稳定性得到明显提高。  相似文献   

16.
The “in situ” preparation and characterization of composites of polyaniline (PANI) and single-walled carbon nanotubes (SWCNTs) are reported. To improve the dispersion and compatibility with the polymer matrix the raw SWCNTs were modified following different routes. SWCNTs oxidized by chemical or thermal treatments (nitric acid and air oxidation, respectively) were subjected to covalent functionalization with octadecylamine (ODA). SWCNT/PANI composites were prepared either from just oxidized SWCNTs, or from ODA functionalized SWCNTs. Temperature-programmed desorption, elemental analyses, ultraviolet-visible (UV-vis), UV-vis with near infrared and Raman spectroscopy, X-ray diffraction, scanning and transmission electron microscopy and conductivity measurements were used to characterize the functionalized SWCNT materials, dispersions and composites. The PANI composite prepared from air oxidized SWCNTs showed the best electrical conductivity indicating a better interaction with polyaniline than ODA functionalised SWCNTs. The improvement of conductivity is attributed to the doping effect or charge transfer of quinoide rings from PANI to SWCNTs.  相似文献   

17.
The polyaniline (PANI)/activated carbon (AC) nanocomposite electrodes were prepared by electropolymerization of aniline monomers on the surface of AC/polyvinyl alcohol (PVA) electrodes for supercapacitor studies. Fourier transforms infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses were performed to characterize the structure and morphology of the nanocomposite electrodes. The electrochemical properties of the prepared nanocomposite electrodes and the supercapacitive behavior of the PANI, AC, and AC/PANI/PVA electrodes were investigated using cyclic voltammetry (CV) and galvanostatic charge/discharge measurements, respectively. Morphological studies showed that a thin film of PANI has been uniformly deposited on the porous surface of AC electrode, and an ordered arrangement of nanostructures with interlinked porous network has been made. Electrochemical measurements showed that AC particles prevent the degradation of PANI chains during charge/discharge cycles. The specific capacitance of the AC/PANI/PVA nanocomposite electrode was 338.15 F/g which is higher than that of the pristine AC electrode (0.08 F/g). This is due to the contribution of PANI chains by their pseudocapacitance (redox reaction) properties. Although the specific capacitance of PANI electrode (378.57 F/g) was greater than that of the nanocomposite electrode, the cyclic stability of the PANI electrode was lower than that of the AC/PANI/PVA nanocomposite electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号