首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
传统星形级联H桥(CHB)静止同步补偿器(STATCOM)补偿负序电流时会产生不平衡三相有功功率,造成相间直流电压不均衡。通常只能通过注入零序电压重新分配三相有功功率,来实现相间直流电压均衡。然而,零序电压注入将极大地增加STATCOM的输出电压,限制了负序电流补偿范围。以混合级联型STATCOM为研究对象,给出一种通过共直流母线单元来转移相间不平衡有功功率的方法,并以此提出相间均压控制策略。最后,在7.5 kvar的混合级联型STATCOM实验平台验证所提相间均压控制策略的可行性。  相似文献   

2.
星形级联H桥静止同步补偿器(SCHB STATCOM)补偿负序电流时会产生三相不平衡有功功率,造成相间直流电压不均衡.为了实现相间直流电压均衡,通常需注入零序电压以重新分配三相有功功率.然而,传统的零序电压注入算法普遍基于有功功率的代数模型,方程组求解复杂且无法直观地表明零序电压的产生机理.此外,零序电压的注入将极大地...  相似文献   

3.
星形级联H桥静止同步补偿器(staticsynchronous compensator,STATCOM)在中高压配电和输电网中应用广泛,但其负序电流补偿能力较弱,容易引起相间子模块直流电压的不平衡。为了实现任意不平衡度的负序电流补偿,文中提出一种基于双频功率回路的星形级联H桥STATCOM拓扑,该拓扑在传统星形结构基础上仅需增加两组相间RLC谐振器,并利用谐振频率分量实现相间功率的流动,且不影响工频补偿电流的输出。在分析拓扑工作原理的基础上进一步提出基于双频功率的控制策略,能够在相间重新分配三相不平衡功率,保证三相直流侧电压平衡,实现任意不平衡度的电流补偿。最后,针对所提出的拓扑及控制策略进行仿真及实验验证,证明所提方法的有效性与优势。  相似文献   

4.
静止同步补偿器(STATCOM)除补偿电网平衡无功功率外,在网侧电压跌落时,还需输出负序无功电流来实现低电压穿越(LVRT)以支撑电网.传统的LVRT电流基准应用于星形级联H桥STATCOM(CHB-STATCOM)拓扑,会因电流不平衡导致单相过流,此外,由于需要额外注入零序电压实现相间电压均衡,CHB-STATCOM...  相似文献   

5.
针对链式静止同步补偿器(STATCOM)在负载不平衡情况下的控制问题,建立了其正序、负序数学模型,详细推导了在负载不平衡时正序和负序环境下的反馈线性化解耦控制方程,提出一种基于反馈线性化与重复控制相结合的负载不平衡下链式STATCOM双环叠加控制方法,正序电流环控制装置补偿负载所需无功,负序电流环补偿负载不平衡情况下的负序电流,引入重复控制抑制装置本身产生低次谐波和扰动。采用主从控制方案实现控制要求,主控制器用于实现系统不平衡下双环叠加控制算法;从控制器利用有功电流均等分配来控制直流侧电容电压平衡。仿真和实验表明:该方法可以有效地解决链式STATCOM对不平衡负载的补偿问题,具有一定的工程参考价值。  相似文献   

6.
电网电压不平衡下,星形级联H桥静止同步补偿器(STATCOM)三相有功功率分配不相等,造成三相相间直流电压不均衡,影响系统稳定工作。基于负序电压注入的相间直流电压均衡控制具有功率调节能力强的优点,可使系统在电网电压严重不平衡的情况下正常工作。为提高电网不平衡下相间直流电压的动态性能,通常采用基于负序电压注入的前馈控制。传统前馈控制算法建立在三相静止a,b,c坐标系上,引入了大量的反三角函数和开根号运算,极其复杂。不仅如此,忽略了正序电流控制环与负序电压的关系,致使前馈控制输出的负序电压不够精确。这里提出一种新的前馈控制算法,该算法建立在两相旋转d,q坐标系上,由直流形式表示。同时,还考虑正序电流控制环与负序电压的关系,故所提前馈控制算法准确且简单易行。最后,搭建400 V/±5 kvar的星形级联H桥STATCOM样机验证所提方法的可行性与有效性。  相似文献   

7.
华明  管松敏  朱永亮 《电源学报》2020,18(4):165-171
电网电压不平衡下,星形级联H桥STATCOM的三相直流电压通常被控制为相等。然而,为了应对电网的负序电压,三相调制波会变得不平衡。不平衡的调制波会减少STATCOM输出电压的阶梯数,同时还会使得三相直流电压的二次脉动不平衡,由此增加了输出电流的高频与低频的谐波含量。不仅如此,输出电流中还需要注入负序分量用来重新分配三相有功功率实现三相直流电压均衡,由此不利于电网的电能质量。为了提高电流的质量,在电网电压不平衡下将三相直流电压调节为不相等值,从而保证三相调制波的平衡且三相调制最大。基于这个思想,通过正负序分离,在满足电流平衡的前提下推导出三相直流电压参考值。同时,为了维持三相直流电压的稳定,推导了由三相直流电压偏差所产生的输出零序电压,由此分析STATCOM三相输入的功率流,发现由负序电压和零序电压产生的功率相互抵消,这就意味着STATCOM的三相直流电压可以自稳定,无需注入额外的负序电流用来实现三相直流电压稳定。最后,搭建400 V/±5 kvar的星形级联H桥STATCOM样机,验证了提出方法的可行性与有效性。  相似文献   

8.
张海洋  王明渝 《现代电力》2020,37(1):98-103
针对中压配电网中普遍存在的三相不对称现象,采用级联H桥分离直流母线结构的电力电子变压器,为了解决直流侧电压平衡问题,在输入电压和输出负载不对称时,提出了一种新的负序电压注入法控制相间直流电容电压平衡,建立了每相平均功率与负序电压之间的关系,在dq坐标系中对负序电压进行了计算,避免了复杂的三角函数求解。计算结果中不含电网电流,无需对电流进行正负序分离,只需采用单电流内环控制。另外,在输出级采用调节占空比的方法实现相内直流电容电压的平衡控制。仿真结果表明了所提控制策略的有效性。  相似文献   

9.
三相电压不平衡下级联STATCOM的控制方法   总被引:2,自引:2,他引:0  
针对三相电压不平衡下级联静止同步补偿器(STATCOM)的控制问题,分析了级联STATCOM在三相电压不平衡时的工作特性,指出可以通过让级联STATCOM输出负序电压的办法来保证接入点的电压平衡。详细推导了系统在正序和负序环境下的解耦控制方程,提出一种新的正序—负序解耦脉宽调制的控制方法,分析了其两种工作模式:无功功率补偿模式和电压控制模式。级联STATCOM上层采用正序—负序解耦控制;下层采用能量平衡的控制策略保证各模块直流侧电容电压平衡。仿真和实验表明,该方法可以有效地解决级联STATCOM在三相电压不平衡下的安全运行问题,使得其在抵御一定的不平衡电压的同时具有较快的无功功率补偿特性,实现其最大化利用。  相似文献   

10.
正针对负载不平衡环境下链式静止同步补偿器(STATCOM)的控制问题,建立了其不平衡条件下正序、负序数学模型,构建了正序及负序环境下链式STATCOM的神经元解耦控制模型,提出一种基于神经元解耦的负载不平衡下链式STATCOM的正序-负序双环控制方法,正序控制环控制STATCOM装置补偿负载所需无功,负序控制环补偿负载不平衡情况下的负序电流,引入神经网络提高系统响应速度及控制准确度。采用主从控制方案实现控制要求,主控制器用于实现负载不平衡下正序-负序双环控制算法;从控制器利用有功电压均等分配的控制方法来实现各模块直流侧电容电压平衡。仿真与实验表明:该方法可以有效地解决链式STATCOM对不平衡负载的补偿问题,具有一定的工程参考价值。  相似文献   

11.
星形链式静止同步补偿器(STATCOM)受中性点的约束,三相输出电流之和必须为零。STATCOM在输出负序电流补偿系统不对称负荷时,可通过输出零序电压来维持STATCOM相间有功和直流电压的平衡。推导星形链式STATCOM补偿不平衡电流所需输出零序电压的数学表达式,结合相间直流电压平衡策略,给出电流解耦控制下星形链式STATCOM不对称负荷补偿策略。仿真和实验验证了所提方法的有效性和可行性。  相似文献   

12.
何小勇 《湖南电力》2021,41(5):81-86
电网发生故障或者接入大功率不平衡负载时,会出现电网电压不对称,影响系统稳定运行,对其快速地进行无功补偿显得尤为重要.角型级联静止同步补偿器(Static Synchronous Compensator,STATCOM)能够对无功和负序电流进行综合补偿,是目前高压大容量应用场合最有效的电能质量解决方案之一.然而角形补偿器相电流指令信号获取方法较为复杂,指令计算速度慢,难以实现快速补偿.为此,提出一种基于滑模控制的角形级联STATCOM快速不平衡补偿方法,在根据电网电压不平衡度计算电流补偿指令时,引入滑模控制并与PI调节相结合,提升不平衡补偿指令计算速度.结合角形级联STATCOM的电压稳定控制、相间平衡控制和电流内环控制,实现电网电压的快速支撑.最后,通过仿真研究验证所提控制方法的正确性和有效性.  相似文献   

13.
多电平变换器补偿不平衡负载的应用分析   总被引:2,自引:0,他引:2       下载免费PDF全文
为了准确分析级联H桥星型接法变换器、级联H桥角型接法变换器和模块化多电平变换器在电网故障情况补偿不平衡负载的能力,根据功率平衡原理分别建立了这三种多电平变换器的数学模型进行对比分析,并得出结论:基于级联H桥星型接法的STATCOM不适合补偿不平衡负载。基于级联H桥角型接法变换器的STATCOM在电网电压正常时能很好地补偿不平衡负载,但是当电网电压发生故障时补偿不平衡负载的性能迅速降低。基于模块化多电平变换器的STATCOM无论是在电网电压正常还是故障不对称的情况下都能很好地补偿无功电流和负序电流。最后,基于Matlab/Simulink仿真结果表明了理论分析的正确性和有效性。  相似文献   

14.
由于不对称性负载的广泛存在,STATCOM的负序电流补偿能力得到越来越多的重视,但是目前还缺乏合适的高压负序电流测试装置对其性能进行准确测试。本文提出一种高压链式负序电流发生装置,并对负序电流输出下直流电压相间不均衡进行了分析,理论分析表明产生这一现象的原因是单相桥臂中负序电流与正序电压形成的有功功率,在此基础上本文提出根据相间压差通过PI控制获得零序电压从而实现负序电流输出的控制策略。最后,本文通过搭建的20 kvar链式负序电流发生装置试验平台对控制策略进行验证,试验结果证明了控制策略的有效性。  相似文献   

15.
星形级联静止无功发生器(SVG)在补偿不平衡负载时,通常采用零序电压注入法来维持直流侧相间平衡,由于相间平衡的前提是SVG输出电压需与输出电流相垂直,故其相量内积为零,则可通过待定系数法简单直接地求出所需的零序电压:在此基础上可以进一步确认星接SVG的不平衡补偿范围,SVG直流侧电压的大小对不平衡补偿范围有着重要意义;准PR控制能有效进行电流跟踪,在此提出了新型直流侧电压分层控制策略,它可有效减少负序分量对补偿性能的影响.所提策略在相关仿真和实验中得到了充分验证.  相似文献   

16.
针对H桥级联静止同步补偿器(STATCOM)各模块不一致工作状态下容易导致直流侧电压不平衡的问题,提出了一种新的直流侧电压分级控制方法。分析H桥模块(HBI)级联电平叠加方式,建立起H桥级联STATCOM动态工作特性及电流内环前馈解耦控制策略的数学模型,深入研究了H桥级联STATCOM与电力系统的功率交换机理和正负序电流的特征,在此基础上,运用正序电流控制STATCOM总体电压平衡、负序电流实现STATCOM各相变流电路直流侧间的电压平衡控制,通过调节HBI的交流输出电压幅值和与电流的相位差使各HBI直流侧电容电压维持在设定值。仿真结果验证了所提方法的可行性与正确性。  相似文献   

17.
级联型并网逆变器可以无变压器并入高压电网,并且具有容量大、效率高等特点,对配合可再生能源大规模并网和增强电力系统稳定性具有重要的意义。但级联结构中存在直流侧平衡问题,这严重影响到装置的输出性能和可靠性。针对三相星型结构中的相间直流侧不平衡,在并网逆变器注入零序和负序电压的情况下,推导出其各相有功功率的数学模型并对比功率调节能力,提出一种结合零序和负序电压注入的相间直流侧平衡控制方法及其适用条件,较好地解决了直流侧平衡问题,兼顾了装置性能和功率调节能力。通过仿真和实验验证了该方法的有效性和可行性,实验结果表明,该方法即使在电网电压不平衡的条件下,也可以保证相间直流侧平衡。  相似文献   

18.
为了改善在电网不平衡故障穿越中,级联型H桥静止同步补偿器(CHB-STATCOM)输出电流对称度和谐波特性,首先建立了不平衡故障电网负序电压和STATCOM相直流侧电压的定量关系,揭示了分离直流侧电压可获得对应的交流负序电压分量机理,提出通过调节三相直流电压即可直接产生相应的交流负序电压分量,实现对输出负序电流抑制;其次,利用直流电压闭环调节进一步产生装置高调制比,以改善输出电流谐波特性,最后通过380 V/7 kVA级联型STATCOM动模原理样机验证了所提控制方法的正确性和有效性。  相似文献   

19.
张晓虎  杨杰 《电工技术》2020,(19):13-16
针对不平衡负载引起的电网三相不平衡问题,提出利用STATCOM输出负序电流的方式来保证交流侧PCC处电网的平衡。该方案主要采用了直流侧电压均衡控制、三相级联H桥调制部分、电压和电流双闭环、正负序提取算法、负序电流前馈等控制算法。仿真和试验表明,该方法可在保证直流侧电压稳定的基础上,有效解决由负载不平衡引起的电网不平衡问题。  相似文献   

20.
直流侧电压稳定与均衡控制是保证级联H桥STATCOM安全可靠运行的前提,针对配电网电网电压不平衡时STATCOM相间直流侧电压不均衡问题,基于dq坐标系建立系统三相功率模型,分析相间有功功率交换过程,从理论角度证明负序电流与相间有功功率的内在联系,继而提出一种利用负序电流前馈实现不平衡工况下级联H桥STATCOM相间直流电压均衡的控制策略;另一方面,通过对CPS-SPWM调制法的分析,证明在单位时间内各H桥子模块存在吞吐有功功率不相等的问题,虽然采用基波频率非整数倍载波在一定程度上能减少各子模块有功功率差异,但对相内子模块直流电压均衡控制的效果并不理想,针对这一不足,基于子模块独立控制思想,提出一种改进相内H桥子模块电压均衡控制策略.仿真验证证明了所提出的控制策略的正确性及可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号