首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
联邦学习作为分布式机器学习框架,在数据不离开本地的情况下,通过共享模型参数达到协作训练的目标,一定程度上解决了隐私保护问题,但其存在中心参数服务器无法应对单点故障、潜在恶意客户端梯度攻击、客户端数据偏态分布导致训练性能低下等问题。将去中心化的区块链技术与联邦学习相结合,提出基于超级账本的集群联邦优化模型。以超级账本作为分布式训练的架构基础,客户端初始化后在本地训练向超级账本传输模型参数及分布信息,通过聚类优化联邦学习模型在客户端数据非独立同分布下的训练表现。在此基础上,随机选举客户端成为领导者,由领导者代替中央服务器的功能,领导者根据分布相似度和余弦相似度聚类并下载模型参数聚合,最后客户端获取聚合模型继续迭代训练。以EMNIST数据集为例,数据非独立同分布情况下该模型平均准确率为79.26%,较FedAvg提高17.26%,在保证准确率的前提下,较集群联邦学习训练至收敛的通信轮次减少36.3%。  相似文献   

2.
随着联邦学习的不断兴起,梯度提升决策树(GBDT)作为一种传统的机器学习方法,逐渐应用于联邦学习中以达到理想的分类效果。针对现有GBDT的横向联邦学习模型,存在精度受非独立同分布数据的影响较大、信息泄露和通信成本高等问题,提出了一种面向非独立同分布数据的联邦梯度提升决策树(federated GBDT for non-IID dataset,nFL-GBDT)。首先,采用局部敏感哈希(LSH)来计算各个参与方之间的相似样本,通过加权梯度来构建第一棵树。其次,由可靠第三方计算只需要一轮通信的全局叶权重来更新树模型。最后,实验分析表明了该算法能够实现对原始数据的隐私保护,并且通信成本低于simFL和FederBoost。同时,实验按照不平衡比率来划分三组公共的数据集,结果表明该算法与Individual、TFL及F-GBDT-G相比,准确率分别提升了3.53%、5.46%和4.43%。  相似文献   

3.
在传统的联邦学习中,多个客户端的本地模型由其隐私数据独立训练,中心服务器通过聚合本地模型生成共享的全局模型。然而,由于非独立同分布(Non-IID)数据等统计异质性,一个全局模型往往无法适应每个客户端。为了解决这个问题,本文提出一种针对Non-IID数据的基于AP聚类算法的联邦学习聚合算法(APFL)。在APFL中,服务器会根据客户端的数据特征,计算出每个客户端之间的相似度矩阵,再利用AP聚类算法对客户端划分不同的集群,构建多中心框架,为每个客户端计算出适合的个性化模型权重。将本文算法在FMINST数据集和CIFAR10数据集上进行实验,与传统联邦学习FedAvg相比,APFL在FMNIST数据集上提升了1.88个百分点,在CIFAR10数据集上提升了6.08个百分点。实验结果表明,本文所提出的APFL在Non-IID数据上可以提高联邦学习的精度性能。  相似文献   

4.
在联邦学习中,跨客户端的非独立同分布(non-IID)数据导致全局模型收敛较慢,通信成本显著增加。现有方法通过收集客户端的标签分布信息来确定本地模型的聚合权重,以加快收敛速度,但这可能会泄露客户端的隐私。为了在不泄露客户端隐私的前提下解决non-IID数据导致的收敛速度降低的问题,提出FedNA聚合算法。该算法通过两种方法来实现这一目标。第一,FedNA根据本地模型类权重更新的L1范数来分配聚合权重,以保留本地模型的贡献。第二,FedNA将客户端的缺失类对应的类权重更新置为0,以缓解缺失类对聚合的影响。在两个数据集上模拟了四种不同的数据分布进行实验。结果表明,与FedAvg相比,FedNA算法达到稳定状态所需的迭代次数最多可减少890次,降低44.5%的通信开销。FedNA在保护客户端隐私的同时加速了全局模型的收敛速度,降低了通信成本,可用于需要保护用户隐私且对通信效率敏感的场景。  相似文献   

5.
联邦学习中由于不同客户端本地数据分布异质,在本地数据集上训练的客户端模型优化目标与全局模型不一致,导致出现客户端漂移现象,影响全局模型性能.为了解决非独立同分布数据带来的联邦学习模型性能下降甚至发散的问题,文中从本地模型的通用性角度出发,提出基于结构增强的异质数据联邦学习模型正则优化算法.在客户端利用数据分布异质的本地数据进行训练时,以结构化的方式采样子网络,并对客户端本地数据进行数据增强,使用不同的增强数据训练不同的子网络学习增强表示,得到泛化性较强的客户端网络模型,对抗本地数据异质带来的客户端漂移现象,在联邦聚合中得到性能更优的全局模型.在CIFAR-10、CIFAR-100、ImageNet-200数据集上的大量实验表明,文中算法性能较优.  相似文献   

6.
王树芬  张哲  马士尧  陈俞强  伍一 《计算机工程》2022,48(6):107-114+123
联邦学习允许边缘设备或客户端将数据存储在本地来合作训练共享的全局模型。主流联邦学习系统通常基于客户端本地数据有标签这一假设,然而客户端数据一般没有真实标签,且数据可用性和数据异构性是联邦学习系统面临的主要挑战。针对客户端本地数据无标签的场景,设计一种鲁棒的半监督联邦学习系统。利用FedMix方法分析全局模型迭代之间的隐式关系,将在标签数据和无标签数据上学习到的监督模型和无监督模型进行分离学习。采用FedLoss聚合方法缓解客户端之间数据的非独立同分布(non-IID)对全局模型收敛速度和稳定性的影响,根据客户端模型损失函数值动态调整局部模型在全局模型中所占的权重。在CIFAR-10数据集上的实验结果表明,该系统的分类准确率相比于主流联邦学习系统约提升了3个百分点,并且对不同non-IID水平的客户端数据更具鲁棒性。  相似文献   

7.
柏财通  崔翛龙  李爱 《计算机工程》2022,48(10):103-109
当联邦学习(FL)算法应用于鲁棒语音识别任务时,为解决训练数据非独立同分布(Non-IID)与客户端模型缺乏个性化问题,提出基于个性化本地蒸馏的联邦学习(PLD-FLD)算法。客户端通过上行链路上传本地Logits并在中心服务器聚合后下传参数,当边缘端模型测试性能优于本地模型时,利用下载链路接收中心服务器参数,确保了本地模型的个性化与泛化性,同时将模型参数与全局Logits通过下行链路下传至客户端,实现本地蒸馏学习,解决了训练数据的Non-IID问题。在AISHELL与PERSONAL数据集上的实验结果表明,PLD-FLD算法能在模型性能与通信成本之间取得较好的平衡,面向军事装备控制任务的语音识别准确率高达91%,相比于分布式训练的FL和FLD算法具有更快的收敛速度和更强的鲁棒性。  相似文献   

8.
冯晨  顾晶晶 《计算机科学》2023,(11):317-326
联邦学习有效解决了数据孤岛问题,但仍然存在一些挑战。首先,联邦学习的训练节点具有较大的硬件异构性,对训练速度和模型性能存在影响,现有工作主要集中于联邦优化,但多数方法没有解决同步通信模式下各节点计算时间难以协调导致资源浪费的问题;此外,联邦学习中多数训练节点为移动设备,网络环境差,通信开销高,导致了更严重的网络瓶颈。已有方法通过对训练节点上传的梯度进行压缩来降低通信开销,但不可避免地带来了模型性能损失,难以达到较好的质量和效率的平衡。针对上述难题,在计算阶段,提出了自适应梯度聚合(Adaptive Federated Averaging, AFA),根据各个节点的硬件性能自适应协调本地训练的迭代周期,使得等待全局梯度下载的空闲时间整体最小化,提高了联邦学习的计算效率。在通信阶段,提出双重稀疏化(Double Sparsification, DS),通过在训练节点端和参数服务器端进行梯度稀疏化来最大化降低通信开销。此外,各个训练节点根据本地梯度信息和全局梯度信息的丢失值进行误差补偿,以较小的模型性能损失换取较大的通信开销降低。在图像分类数据集和时序预测数据集上进行实验,结果证明,所提方案...  相似文献   

9.
联邦学习能够在不泄露数据隐私的情况下合作训练全局模型,但这种协作式的训练方式在现实环境下面临参与方数据非独立同分布(Non-IID)的挑战:模型收敛慢、精度降低的问题。许多现有的联邦学习方法仅从全局模型聚合和本地客户端更新中的一个角度进行改进,难免会引发另一角度带来的影响,降低全局模型的质量。提出一种分层持续学习的联邦学习优化方法(FedMas)。FedMas基于分层融合的思想,首先,采用客户端分层策略,利用DBSCAN算法将相似数据分布的客户端划分到不同的层中,每次仅挑选某个层的部分客户端进行训练,避免服务器端全局模型聚合时因数据分布不同产生的权重分歧现象;进一步,由于每个层的数据分布不同,客户端在局部更新时结合持续学习灾难性遗忘的解决方案,有效地融合不同层客户端数据间的差异性,从而保证全局模型的性能。在MNIST和CIFAR-10标准数据集上的实验结果表明,FedMas与FedProx、Scaffold和FedCurv联邦学习算法相比,全局模型测试准确率平均提高0.3~2.2个百分点。  相似文献   

10.
针对传统边缘联邦学习(FL)由于客户端资源异质性导致联邦学习模型性能低下等问题,提出面向边缘计算的联邦学习客户端选择机制。该机制综合考虑了客户端的计算资源、通信资源以及数据资源,在联邦学习每轮给定的时间阈值内,使得边缘服务器能够选取尽可能多的客户端数量的同时避免资源不足的客户端,保证参与到联邦学习过程中的客户端的质量,在一定程度上降低了联邦学习的训练成本。该联邦学习客户端选择机制在MNIST和CIFAR-10数据集上与现有的联邦学习客户端选择算法——联邦平均算法(FedCS)和基于多标准的联邦学习客户端选择算法(FedMCCS)进行了对比模拟实验,实验结果表明当所提方法达到FedCS和FedMCCS的最终精度时:在MNIST数据集上时间消耗分别减少了79.55%和72.73%,且最终精度分别提升了2.0%和1.8%;在CIFAR-10数据集上时间消耗分别减少了70.83%和70.83%,且最终精度分别提升了23.6%和27.8%。实验结果验证了提出的客户端选择算法能够有效提升联邦学习的效率。  相似文献   

11.
联邦学习是一种分布式机器学习方法,它将数据保留在本地,仅将计算结果上传到客户端,从而提高了模型传递与聚合的效率和安全性.然而,联邦学习面临的一个重要挑战是,上传的模型大小日益增加,大量参数多次迭代,给通信能力不足的小型设备带来了困难.因此在本文中,客户端和服务器被设置为仅一次的互相通信机会.联邦学习中的另一个挑战是,客户端之间的数据规模并不相同.在不平衡数据场景下,服务器的模型聚合将变得低效.为了解决这些问题,本文提出了一个仅需一轮通信的轻量级联邦学习框架,在联邦宽度学习中设计了一种聚合策略算法,即FBL-LD.算法在单轮通信中收集可靠的模型并选出主导模型,通过验证集合理地调整其他模型的参与权重来泛化联邦模型. FBL-LD利用有限的通信资源保持了高效的聚合.实验结果表明, FBL-LD相比同类联邦宽度学习算法具有更小的开销和更高的精度,并且对不平衡数据问题具有鲁棒性.  相似文献   

12.
为了解决数据共享需求与隐私保护要求之间不可调和的矛盾,联邦学习应运而生.联邦学习作为一种分布式机器学习,其中的参与方与中央服务器之间需要不断交换大量模型参数,而这造成了较大通信开销;同时,联邦学习越来越多地部署在通信带宽有限、电量有限的移动设备上,而有限的网络带宽和激增的客户端数量会使通信瓶颈加剧.针对联邦学习的通信瓶...  相似文献   

13.
联邦学习是一种能够保护数据隐私的机器学习设置,然而高昂的通信成本和客户端的异质性问题阻碍了联邦学习的规模化落地。针对这两个问题,提出一种面向通信成本优化的联邦学习算法。首先,服务器接收来自客户端的生成模型并生成模拟数据;然后,服务器利用模拟数据训练全局模型并将其发送给客户端,客户端利用全局模型进行微调后得到最终模型。所提算法仅需要客户端与服务器之间的一轮通信,并且利用微调客户端模型来解决客户端异质性问题。在客户端数量为20个时,在MNIST和CIFAR-10这两个数据集上进行了实验。结果表明,所提算法能够在保证准确率的前提下,在MNIST数据集上将通信的数据量减少至联邦平均(FedAvg)算法的1/10,在CIFAR-10数据集上将通信数据量减少至FedAvg算法的1/100。  相似文献   

14.
联邦学习(federated learning)可以解决分布式机器学习中基于隐私保护的数据碎片化和数据隔离问题。在联邦学习系统中,各参与者节点合作训练模型,利用本地数据训练局部模型,并将训练好的局部模型上传到服务器节点进行聚合。在真实的应用环境中,各节点之间的数据分布往往具有很大差异,导致联邦学习模型精确度较低。为了解决非独立同分布数据对模型精确度的影响,利用不同节点之间数据分布的相似性,提出了一个聚类联邦学习框架。在Synthetic、CIFAR-10和FEMNIST标准数据集上进行了广泛实验。与其他联邦学习方法相比,基于数据分布的聚类联邦学习对模型的准确率有较大提升,且所需的计算量也更少。  相似文献   

15.
Federated learning came into being with the increasing concern of privacy security, as people’s sensitive information is being exposed under the era of big data. It is an algorithm that does not collect users’ raw data, but aggregates model parameters from each client and therefore protects user’s privacy. Nonetheless, due to the inherent distributed nature of federated learning, it is more vulnerable under attacks since users may upload malicious data to break down the federated learning server. In addition, some recent studies have shown that attackers can recover information merely from parameters. Hence, there is still lots of room to improve the current federated learning frameworks. In this survey, we give a brief review of the state-of-the-art federated learning techniques and detailedly discuss the improvement of federated learning. Several open issues and existing solutions in federated learning are discussed. We also point out the future research directions of federated learning.  相似文献   

16.
窦勇敢    袁晓彤   《智能系统学报》2022,17(3):488-495
联邦学习是一种分布式机器学习范式,中央服务器通过协作大量远程设备训练一个最优的全局模型。目前联邦学习主要存在系统异构性和数据异构性这两个关键挑战。本文主要针对异构性导致的全局模型收敛慢甚至无法收敛的问题,提出基于隐式随机梯度下降优化的联邦学习算法。与传统联邦学习更新方式不同,本文利用本地上传的模型参数近似求出平均全局梯度,同时避免求解一阶导数,通过梯度下降来更新全局模型参数,使全局模型能够在较少的通信轮数下达到更快更稳定的收敛结果。在实验中,模拟了不同等级的异构环境,本文提出的算法比FedProx和FedAvg均表现出更快更稳定的收敛结果。在相同收敛结果的前提下,本文的方法在高度异构的合成数据集上比FedProx通信轮数减少近50%,显著提升了联邦学习的稳定性和鲁棒性。  相似文献   

17.
由于隐私泄露的风险越来越大,而采集的数据中的通常包含大量隐私信息,使数据的采集者不愿意共享自己的数据,造成“数据孤岛”,联邦学习能够实现数据不离本地的数据共享,但其在多机构数据共享中还存在一些问题,一方面中央服务器集中处理信息造成昂贵的成本,易产生单点故障,另一方面,对于多机构数据共享而言,参与节点中混入恶意节点可能影响训练过程,导致数据隐私泄露,基于上述分析,本文提出了一种将区块链和联邦学习相结合的以实现高效节点选择和通信的新的分布式联邦学习架构,解放中央服务器,实现参与节点直接通信,并在此架构上提出了一种基于信誉的节点选择算法方案(RBLNS),对参与节点进行筛选,保证参与节点的隐私安全。仿真结果表明,RBLNS能够显着提高模型的实验性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号