首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SiC–Si composites are widely used either as a bulk material or as a matrix for fibre reinforced ceramics. In the current research, nanocomposites of SiC–Si with different volume fractions of Si were sintered by spark plasma sintering (SPS) for the first time. The effect of Si content and different sintering parameters on relative density, microstructure, hardness and fracture toughness of the sintered materials have been investigated. The relative density increased from about 83 to 99% by increasing the sintering temperature to 1700°C, sintering time to 10?min, and pressure to 70?MPa for composites containing >20?vol.-% Si. The results revealed that the full dense SiC–20?vol.-%Si composite can be obtained by SPS at 1700°C, 10?min and 70?MPa. Moreover, in this condition, the hardness and toughness of the composites reached the optimum values.  相似文献   

2.
SiC陶瓷具有优异的力学性能、热学性能、抗热震性能、抗化学侵蚀性能和抗氧化性能,是热交换器设备的常用基体材料。由于原料、成型工艺、烧成工艺和烧结助剂等因素制约,SiC陶瓷含有较多气孔、晶界、杂质和缺陷,导致其常温热导率(≤270 W·m^(-1)·K^(-1))低于碳化硅单晶材料(6H-SiC,490 W·m^(-1)·K^(-1)),且不同制备工艺下热导率存在较大差异。本文主要分析了温度、气孔、晶体结构和第二相对SiC陶瓷导热性能的影响,归纳了热压烧结法、放电等离子烧结法、无压烧结法、重结晶烧结法和反应烧结法制备高导热SiC陶瓷的特点,对优化烧结助剂种类及含量、高温热处理和添加高导热第二相等改善SiC陶瓷导热性能的主要措施进行阐述,并展望了未来高导热SiC陶瓷的研究方向,为未来制备低成本、高导热SiC质热交换器提供理论参考。  相似文献   

3.
BaTiO3-based composites with nanosized SiC particulates were successfully fabricated by a hot-pressing technique in an argon atmosphere. Crystal structure and phase transformation behaviour were investigated by X-ray diffraction analysis, linear thermal expansion analysis and internal friction measurement. It was confirmed that the added SiC particulates were uniformly distributed within the matrix BaTiO3 grains, with some larger particulates located at the BaTiO3 grain boundaries. In addition, there were no reaction phases between BaTiO3 matrix and SiC particulates. The crystal structure gradually changed from tetragonal to cubic phase with respect to the SiC content. The Curie temperature, T c , was lowered as the SiC content increased. Moreover, the transformations in the low-temperature range almost disappeared above 1 vol% SiC. The diffused phase transformation phenomenon was observed as the SiC content increased up to 3 vol%. The results were associated with the grain-size reduction, the existence of oxygen vacancies and the residual stresses associated with the thermal expansion mismatch between matrix and SiC particulate. The influence on the domain structure development of SiC particulates dispersed within the matrix grains was also discussed.  相似文献   

4.
陈成  张国玲  于化顺  张琳  闵光辉 《功能材料》2012,43(19):2675-2679
通过对SiC颗粒进行表面改性处理,并向Al基体中添加Si元素合金化采用热压烧结方法制备了Al-10Si-50%(质量分数)SiC复合材料,研究了复合材料的微观组织和导热性能。结果表明,复合材料中SiC颗粒在基体中分布均匀,复合材料组织致密;SiC-Al界面清晰、平直,无过渡层和其它附加物,复合材料界面结合良好;复合材料导热性能优异,其热导率可达189W/(m·K),能够满足电子封装材料的日常使用要求。  相似文献   

5.
《Composites Part A》1999,30(4):419-423
SiC matrix composites were fabricated by in-situ formation of transition metal boride and carbide particles from oxide powders by carbothermal reactions. Dense composites with various microstructures were produced by pressureless sintering and additional hot-isostatic pressing. The microstructures and mechanical properties of the composites were dependent upon the pressureless-sintering temperature. The use of submicron-sized TiO2 lead to fine and equiaxial TiB2 particulates. The composites exhibited high flexural strengths (>700 MPa). At higher sintering temperatures, the grain growth of SiC swept the boride into clusters with larger sizes and anisotropic shapes, which improved the fracture toughness of the composite at the expense of strength.  相似文献   

6.
Composites of commercial-purity titanium reinforced with 10 and 20 vol % of SiC and TiB2 particulates were produced by powder blending and extrusion. Heat treatments were conducted on each of these composites. The thermal diffusivities of the composites were measured as a function of temperature using the laser flash technique. Thermal conductivities were inferred from these measurements, using a rule-of-mixtures assumption for the specific heats. It has been shown that, while an enhancement of the thermal conductivity is expected to arise from the presence of both types of reinforcement, this behaviour is in fact observed only with the Ti-TiB2 composites. The thermal conductivity of Ti-TiB2 composites is significantly greater than that of the unreinforced matrix and rises with increasing volume fraction of reinforcement. In contrast, the conductivities of the Ti-SiC composites were considerably lower than that of the unreinforced titanium and decreased with increasing volume fraction of SiC reinforcement. These results have been interpreted in terms of the thermal resistance of the reaction layers which exist between the matrix and two types of particulate reinforcements. The faster reaction kinetics between SiC and Ti gives rise to a thicker reaction layer for a given heat treatment than that between Ti and TiB2 and is also accompanied by a much larger volume change (– 4.6%). It is proposed that this volume decrease, giving rise to interfacial damage and a network of microcracks, is at least partly responsible for a high interfacial thermal resistance, reducing the conductivity of the Ti-SiC composite. These results indicate that TiB2 would be preferable to SiC as a reinforcement in Ti for situations where a high thermal conductivity would be beneficial.  相似文献   

7.
Silicon nitride foams were prepared by direct foaming and subsequent rapid sintering at 1600 °C. The intense thermal radiation generated under the pressureless spark plasma sintering condition facilitated necking of Si3N4 grains. The prepared foams possessed a porosity of ~80 vol% and a compressive strength of ~10 MPa, which required only ~30 min for the entire sintering processes. Rapid growth of one-dimensional SiC nanowires from the cell walls was also observed. Thermodynamic calculations indicated that the vapor–liquid–solid model is applicable to the formation of SiC nanowires under vacuum.  相似文献   

8.
Abstract

In the present study, elemental magnesium and magnesium–silicon carbide composites were synthesised using the methodology of fluxless casting followed by hot extrusion. Microstructural characterisation studies revealed low porosity and a completely recrystallised matrix in every material. The average size of the recrystallised grains was found to decrease with an increasing presence of SiC particulates. For the reinforced magnesium, fairly uniform distribution of SiC particulates and good SiC–Mg interfacial integrity was realised. The results of X-ray diffraction studies indicated the absence of oxide phases and no evidence of interfacial reaction products except in the case of Mg–26.0 wt-%SiC sample. Results of physical and mechanical properties characterisation revealed that an increase in the amount of SiC particulates incorporated leads to an increase in macrohardness and elastic modulus, which does not affect the 0.2% yield strength and reduces the ultimate tensile strength, ductility, and coefficient of thermal expansion. The weight percentage of SiC particulates when plotted against hardness and 0.2% yield strength revealed a linear correlationship. An attempt is made to investigate the effect of increasing amount of SiC particulates on the microstructural features, and physical and mechanical properties of the magnesium matrix.  相似文献   

9.
Nanocomposites containing 2D materials have attracted much attention due to their potential for enhancing electrical, magnetic, optical, mechanical, and thermal properties. However, it has been a challenge to integrate 2D materials into ceramic matrices due to interdiffusion and chemical reactions at high temperatures. A recently reported sintering technique, the cold sintering process (CSP), which densifies ceramics with the assistance of transient aqueous solutions, provides a means to circumvent the aforementioned problems. The efficacious co‐sintering of Ti3C2Tx (MXene), a 2D transition carbide, with ZnO, an oxide matrix, is reported. Using CSP, the ZnO–Ti3C2Tx nanocomposites can be sintered to 92–98% of the theoretical density at 300 °C, while avoiding oxidation or interdiffusion and showing homogeneous distribution of the 2D materials along the ZnO grain boundaries. The electrical conductivity is improved by 1–2 orders of magnitude due to the addition of up to 5 wt% MXene. The hardness and elastic modulus show an increase of 40–50% with 0.5 wt% MXene, and over 150% with 5 wt% of MXene. The successful densification of ZnO–MXene nanocomposite demonstrates that the cold sintering of ceramics with 2D materials is a promising processing route for designing new nanocomposites with a diverse range of applications.  相似文献   

10.
The effects of Y2O3 content, sintering time, sintering temperature, sintering pressure on thermal conductivity of AlN ceramics had been studied. X-ray diffraction (XRD), scanning electron microscope (SEM), laser conductometer and laser granularity dimension analysis measurer were respectively used to measure the phases, microstructure, thermal conductivity and particle size distribution of the samples. These studies reveal that the Y2O3 is an effective sintering addtive, and the best conditions of sintering are that the pressure is 5.15× 109 Pa, the temperature is 1700∘C and the sintering time is 115 min. Under these conditions, the sintered body has reasonable structure and its thermal conductivity is 200 w/(m⋅k).  相似文献   

11.
Millimeter sized SiC (m-SiCp) and nanometer sized SiC (n-SiCp) particulates reinforced Al-6Ti-6Nb matrix composites were prepared by mechanical alloying (MA) and later hot-press sintering. Their microstructure was investigated to know the influence of the incorporated SiC particles. The secondary Al3Ti, AlNb2 intermetallics particle size, the Al matrix grain size and their submicrostructure are strongly affected, and they are correlated with the thermal stability of the composites.  相似文献   

12.
Abstract

Dense aluminium nitride ceramics were prepared by spark plasma sintering at a lower sintering temperature of 1700°C with Y2O3, Sm2O3 and Dy2O3 as sintering additives respectively. The effects of three kinds of sintering additives on the phase composition, microstructure and thermal conductivity of AlN ceramics were investigated. The results showed that those sintering additives not only facilitated the densification via the liquid phase sintering mechanism, but also improved thermal conductivity by decreasing oxygen impurity. Sm2O3 could effectively improve thermal conductivity of AlN ceramics compared with Y2O3 and Dy2O3. Observation by scanning electron microscopy showed that AlN ceramics prepared by spark plasma sintering method manifested quite homogeneous microstructures, but AlN grain sizes and shapes and location of secondary phases varied with the sintering additives. The thermal conductivity of AlN ceramics was mainly affected by the additives through their effects on the growth of AlN grain and the location of secondary phases.  相似文献   

13.
Silicon carbide (SiC)-particle-dispersed-aluminum (Al) matrix composites were fabricated in a unique fabrication method, where the powder mixture of SiC, pure Al and Al–5mass% Si alloy was uniquely designed to form continuous solid–liquid co-existent state during spark plasma sintering (SPS) process. Composites fabricated in such a way can be well consolidated by heating during SPS processing in a temperature range between 798 K and 876 K for a heating duration of 1.56 ks. Microstructures of the composites thus fabricated were examined by scanning electron microscopy and no reaction was detected at the interface between the SiC particle and the Al matrix. The relative packing density of the Al–matrix composite containing SiC was higher than 99% in a volume fraction range of SiC between 40% and 55%. Thermal conductivity of the composite increased with increasing the SiC content in the composite at a SiC fraction range between 40 vol.% and 50 vol.%. The highest thermal conductivity was obtained for Al–50 vol.% SiC composite and reached 252 W/mK. The coefficient of thermal expansion of the composites falls in the upper line of Kerner’s model, indicating strong bonding between the SiC particle and the Al matrix in the composite.  相似文献   

14.
Al/SiC composites with volume fractions of SiC between 0.55 and 0.71 were made from identical tapped and vibrated powder preforms by squeeze casting (SC) and by two different setups for gas pressure infiltration (GPI), one that allows short (1–2 min) liquid metal/ceramic contact time (fast GPI) and the other that operates with rather long contact time, i.e., 10–15 min, (slow GPI). Increased liquid metal–ceramic contact time is shown to be the key parameter for the resulting thermal and electrical conductivity in the Al/SiC composites for a given preform. While for the squeeze cast samples neither dissolution of the SiC nor formation of Al4C3 was observed, the gas pressure assisted infiltration led inevitably to a reduced electrical and thermal conductivity of the matrix due to partial decomposition of SiC leading to Si in the matrix. Concomitantly, formation of Al4C3 at the interface was observed in both sets of gas pressure infiltrated samples. Longer contact times lead to much higher levels of Si in the matrix and to more Al4C3 formation at the interface. The difference in thermal conductivity between the SC samples and the fast GPI samples could be rationalized by the reduced matrix thermal conductivity only. On the other hand, in order to rationalize the thermal conductivity of the slow GPI a reduction in the metal/ceramic interface thermal conductance due to excessive Al4C3-formation had to be invoked. The CTE of the composites generally tended to decrease with increasing volume fraction of SiC except for the samples in which a large expansive drift was observed during the CTE measurement by thermal cycles. Such drift was essentially observed in the SC samples with high volume fraction of SiC while it was much smaller for the GPI samples.  相似文献   

15.
AIN with high thermal conductivity was fabricated by pressureless sintering with Y2O3 as the sintering aid. The thermal conductivity was observed to increase with sintering time (up to 8 h) at 1810 °C. The distribution of the sintering aid was identified as one of the major factors influencing the thermal conductivity in AIN. Non-uniform distribution of the grain boundary phase was found to be associated with a significant amount of porosity, resulting in the enhancement of phonon scattering and thereby lowering the thermal conductivity.  相似文献   

16.
碳化硅陶瓷因自身优良的物理化学性能而具有广泛的应用前景.碳化硅的化学键结合特性决定了其难以烧结成型,因此如何制备高质量碳化硅陶瓷是领域内的难点之一.本研究以三元稀土碳化物Dy3Si2C2作为新型SiC陶瓷的烧结助剂,依据Dy-Si-C体系的高温相转变原位促进碳化硅的烧结致密化.采用放电等离子烧结技术,利用金属Dy与Si...  相似文献   

17.
Thermal conductivity of SiCp/Cu composites was usually far below the expectation, which is usually attributed to the low real thermal conductivity of matrix. In the present work, highly pure Cu matrix composites reinforced with acid washed SiC particles were prepared by the pressure infiltration method. The interfacial microstructure of SiCp/Cu composites was characterized by layered interfacial products, including un-reacted SiC particles, a Cu–Si layer, a polycrystalline C layer and Cu–Si matrix. However, no Cu3Si was found in the present work, which is evidence for the hypothesis that the formation of Cu3Si phase in SiC/Cu system might be related to the alloying elements in Cu matrix and residual Si in SiC particles. The thermal conductivity of SiCp/Cu composites was slightly increased with the particle size from 69.9 to 78.6 W/(m K). Due to high density defects, the real thermal conductivity of Cu matrix calculated by H–J model was only about 70 W/(m K). The significant decrease in thermal conductivity of Cu matrix is an important factor for the low thermal conductivity of SiCp/Cu composites. However, even considered the significant decrease of thermal conductivity of Cu matrix, theoretical values of SiCp/Cu composites calculated by H–J model were still higher than the experimental results. Therefore, an ideal particle was introduced in the present work to evaluate the effect of interfacial thermal resistance. The reverse-deduced effective thermal conductivities of ideal particles according to H–J model was about 80 W/(m K). Therefore, severe interfacial reaction in SiCp/Cu composites also leads to the low thermal conductivity of SiCp/Cu composites.  相似文献   

18.
In this paper, copper–graphene composites were fabricated by using two different processing routes (ball milling (BM) and ultrasonication) followed by spark plasma sintering. Vickers hardness and anisotropic thermal conductivity of the composites were measured and observed that ultrasonicated fabricated composites gave better result compared with BM composite and even from pure copper. The hardness values obtained for ultrasonicated copper–graphene composite were 69?HV (57% higher) and thermal conductivity 387?W/m?K (13% higher) by using only 0.5?wt-% of graphene, while for pure copper the values were 44?HV and 341?W/m?K. The value of anisotropic thermal conductivity ultrasonicated composites was also 1.97 which is much higher than pure copper 0.94.  相似文献   

19.
The present study investigates the processing of heat-treated silicon carbide (SiC) particle-reinforced 6061 aluminum alloy (AA) composites. As-received SiC powders were heat treated at 1300ºC, 1400ºC, and 1500ºC in nitrogen atmosphere for 2 h, and the 6061 AA–SiC composites were developed by spark plasma sintering at 560ºC and 60 MPa for 5 min in argon atmosphere. The amorphous silicon nitride is found to form in SiC particles as a result of heating at 1400ºC. The microstructure of the composites exhibited uniform distribution of SiC or SiC/Si3N4 particles in 6061 AA matrix. Further, the heat-treated SiC-reinforced 6061AA composites exhibited improved mechanical properties. A typical combination of UTS of 240 MPa and elongation of 21% is obtained for the 6061 AA composites prepared using SiC powders heated at 1400ºC.  相似文献   

20.
通过快淬-机械球磨-放电等离子烧结工艺制备了p型(Bi0.25Sb0.75)2Te3块体热电材料.在300~523K温度范围内对其电导率、Seebeck系数和热导率进行了测试,并系统研究了快淬后球磨时间对合金热电性能的影响.研究结果表明,随着球磨时间的延长,样品的电导率呈先降后升的趋势,Seebeck系数变化并不明显,而热导率随球磨时间的延长逐渐下降.球磨20h的样品在室温下具有最高的热电优值,最大值达到0.96,机械抗弯强度达到91MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号