首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等研究了淬火-配分(QP)热处理后30Cr13模具钢的物相组成和显微组织的演变规律,并利用动电位极化法对不同工艺热处理的模具钢在3.5%(质量分数)NaCl水溶液中的腐蚀行为进行了分析。结果表明:220Q盐浴淬火试样和220P一步法淬火-配分热处理试样的残余奥氏体体积分数小于3%,随着二步法淬火-配分热处理中配分温度从300℃上升至500℃,30Cr13模具钢的残余奥氏体含量呈现先增加而后降低的趋势,在配分温度为400℃时取得最大值;220Q和220P试样的组织都由板条状马氏体组成,经过二步法淬火-配分热处理后,模具钢的基体组织也由板条马氏体组成,此外在马氏体板条间有白亮条状或者颗粒状M3C型碳化物出现;不同淬火-配分热处理的30Cr13模具钢的耐均匀腐蚀性能差别不大;二步法淬火-配分热处理模具钢试样的点蚀电位高于盐浴淬火试样和一步法淬火-配分热处理试样的。  相似文献   

2.
李晓磊  李云杰  康健  袁国  王国栋 《轧钢》2018,35(3):7-12
以低碳硅锰钢为研究对象,采用直接淬火-配分工艺研究了马氏体区淬火-配分(QP)、贝氏体区淬火-配分(BP)和直接淬火工艺对组织性能演变的影响。结果表明,经QP工艺处理后得到马氏体和残余奥氏体的组织,残余奥氏体体积分数大于10.0%,并且呈现薄膜状分布于马氏体板条间,试样屈服强度大于1 100 MPa,抗拉强度大于1 200 MPa,伸长率在14.75%~16.00%之间,强塑积可高达21.12GPa·%。经BP处理后的试样获得贝氏体基体和17.3%的残余奥氏体组织,试样伸长率高达21.00%,强塑积为22.26GPa·%。经直接淬火工艺处理后的试样,抗拉强度高达1 540 MPa,但残余奥氏体体积分数为3.6%,导致伸长率仅为8.00%,强塑积为12.32GPa·%。此外,还发现少量软相铁素体组织,可以降低试验钢的屈服强度。  相似文献   

3.
吴海燕 《热加工工艺》2007,36(16):32-35,42
对18Cr2Ni4WA钢渗碳、淬火和冷处理,以获得不同残余奥氏体分布的试样,然后进行与T10金属盘对磨的边界润滑磨损研究。实验结果表明:磨损过程中确实存在摩擦诱发马氏体相变,并且碳含量低的残余奥氏体较碳含量高的残余奥氏体更易发生诱发相变。摩擦诱发马氏体对提高材料的耐磨性总是有利的,而残余奥氏体对耐磨性的影响却存在一个临界应力σc。当外加应力大于σc时,残余奥氏体对提高材料的耐磨性有利;当外加应力小于σc时,残余奥氏体对提高材料的耐磨性不利,并且当残余奥氏体和外加应力搭配适当时,耐磨性可达最高值。  相似文献   

4.
一次淬火马氏体及其体积分数的控制是淬火-配分(QP)钢组织性能控制的基础。QP钢的连续退火生产中,均热温度及快冷结束温度对一次淬火马氏体体积分数起决定作用。利用PE(para-equilibrium)的热力学平衡假设计算了不同临界区温度均热时奥氏体中的碳含量,并采用透射电镜检测了淬火后马氏体中的碳含量,验证了热力学计算结果的可靠性。通过热膨胀试验研究了不同临界区温度均热时马氏体相变的体积分数与冷却结束温度之间的关系,建立了适用于临界区均热的一次淬火马氏体相变体积分数与冷却结束温度关系的数学模型,该模型可为QP钢连续退火工艺的制定提供依据。  相似文献   

5.
采用部分奥氏体化-两相区保温-淬火-配分(IQPB)热处理工艺,借助SEM、TEM、XRD研究了淬火配分贝氏体钢组织形貌及残余奥氏体特征,利用EPMA、EBSD、纳米压痕等表征了不同位置残余奥氏体中合金元素的分布情况,结合室温拉伸应力-应变曲线,研究了C、Mn元素对不同位置残余奥氏体稳定性的影响及其相变规律。结果表明,淬火贝氏体钢室温组织中残余奥氏体以块状和薄膜状形态存在。在拉伸形变过程中,发生TRIP效应,残余奥氏体体积减小,相变优先发生在铁素体晶界,最后发生在贝氏体板条之间,C、Mn元素对残余奥氏体有稳定作用,使残余奥氏体不易发生相变。拉伸断口处应力集中,残余奥氏体完全转变为马氏体,距离断口2和4 mm处,残余奥氏体体积分数分别为3.12%和5.03%。薄膜状残余奥氏体比块状残余奥氏体稳定性更强,并且111γ晶向的残余奥氏体不稳定,容易向马氏体转变。  相似文献   

6.
采用淬火-配分-贝氏体区等温(QPB)和双相区保温-淬火-配分-贝氏体区等温(IQPB)两种热处理工艺并进行对比,通过摩擦磨损试验来研究C、Mn元素对残留奥氏体稳定性的影响。采用扫描电镜(SEM)、X射线衍射仪(XRD)、电子探针(EPMA)对试样的显微组织、残留奥氏体含量及C、Mn元素分布进行表征。结果表明:在双相区保温过程中,C、Mn元素发生配分,在奥氏体中富集。摩擦磨损试验后,QPB试样中的残留奥氏体体积分数从7. 24%减少到4. 36%,维氏硬度从417 HV0. 02增加到526 HV0. 02,磨损体积为0. 252 mm~3。IQPB试样中的残留奥氏体体积分数从9.11%减少到7.58%,维氏硬度从384 HV0.02增加到413 HV0. 02,磨损体积为0. 268 mm~3。IQPB试样在摩擦磨损试验前后残留奥氏体体积分数、维氏硬度没有QPB试样变化明显,表明在摩擦磨损过程中,C、Mn元素使残留奥氏体稳定性提高,残留奥氏体不易向马氏体转变。  相似文献   

7.
对碳-锰-硅钢淬火后在不同温度下进行配分处理,采用SEM结合EBSD技术对实验钢显微组织、残余奥氏体含量及力学性能进行表征。结果表明:随配分温度的升高,实验钢的抗拉强度降低,主要因为马氏体脱碳软化所致。残余奥氏体含量与伸长率变化趋势相同,由于在拉伸变形过程中残余奥氏体发生马氏体相变即TRIP效应,从而提高塑性。因此在300℃配分处理后的性能优异,抗拉强度为1328 MPa,伸长率为13%,残余奥氏体含量达到4.78%。  相似文献   

8.
利用盲孔法对分别经淬火-回火和淬火-配分处理后的Fe-0.38C-1.44Mn-1.52Si-0.61Cr试样进行了残余应力测量,结合试样的显微组织特征,研究了残余应力的分布规律。结果表明,两种试样内残余应力均介于热应力型和相变应力型之间,其沿试样厚度分布为W形。淬火-配分试样的残余应力低于淬火-回火试样,主要在于显微组织内存在高的残留奥氏体量和因配分被显著软化的马氏体基体。  相似文献   

9.
将低铬铁素体不锈钢于930℃保温3 min奥氏体化,然后在不同温度的盐浴中淬火至20、150、200、225、250、275和300℃,再于500℃保温1 min配分处理,水冷至室温,以研究中断淬火的温度对钢的组织和力学性能的影响。结果表明:经淬火-配分处理后,钢的组织由铁素体、马氏体和少量残留奥氏体组成,马氏体处于铁素体边界,尺寸为数微米至数十微米。中断淬火冷却的温度对钢的显微组织影响不大,但对残留奥氏体含量有一定影响;在200~250℃中断淬火的钢残留奥氏体的体积分数最高,约5%;随着中断淬火冷却温度的升高,钢的抗拉强度从824 MPa降低至780 MPa,后又升高至812 MPa,而断后伸长率从16.5%升高至20.5%,后又下降至17.6%。从改善塑性的角度考虑,低铬铁素体不锈钢淬火-配分处理的最佳中断淬火冷却温度为200~250℃。  相似文献   

10.
利用中频感应熔炼炉制备球墨铸铁,采用淬火-配分的方法进行热处理,通过X-ray衍射仪、光学显微镜、场发射扫描电镜和硬度计分别研究了淬火温度对球墨铸铁的微观结构和力学性能的影响。结果表明:不同淬火温度下所有试样都含有马氏体和残余奥氏体;随着淬火温度升高,球墨铸铁中残余奥氏体的含量呈现非单调变化,先增加后减小,在淬火温度为200℃时,残余奥氏体的含量达到最大值,约为27.1%;而残余奥氏体中碳含量与残余奥氏体含量呈现相反的变化,随淬火温度的升高,在180~220℃范围达到最低值;硬度试验结果表明,未经配分处理的试样的硬度明显大于配分时间为30 min的试样的硬度;随淬火温度增加,相同配分时间制备的球墨铸铁硬度呈下降的趋势。  相似文献   

11.
利用热变形和两步淬火配分(quenching and partitioning,QP)工艺的复合作用制备低碳合金钢试样,设计不同的热变形温度,研究加载(获得30%变形量)引起的应力和塑性变形对QP工艺下马氏体相变开始温度(Ms),残余奥氏体含量和力学性能的影响.结果表明,与传统两步QP工艺相比,复合作用下显微组织细化,尤其是随着变形温度的降低细化更明显,马氏体板条呈现弯曲形貌.随着变形温度升高,Ms升高,但马氏体转变量却有所下降,其原因是应力引起的位错多在奥氏体母相晶界处出现,成为马氏体相变优先形核的位置,而一旦发生相变,一定的塑性应变将提高晶内奥氏体的稳定性,从而促进残余奥氏体含量增加.复合作用下试样的力学性能也有所提高,在650℃变形时试样的硬度最高,而在750℃变形时试样的塑性最好.  相似文献   

12.
以低碳Si-Mn钢为研究对象,采用双相区保温-淬火(IQ)工艺研究预先Mn配分行为,并对其配分现象进行表征,采用淬火-配分(QP)及双相区保温-奥氏体化-淬火-配分(IQP)热处理工艺,探讨了预先Mn配分处理对低碳高强QP处理钢中C配分和残余奥氏体及力学性能的影响.结果表明,实验钢在双相区保温过程中C,Mn不断向奥氏体内扩散,淬火处理后C,Mn在马氏体(原双相区奥氏体)内呈现明显的富集现象;实验钢经IQP工艺处理后,室温组织中Mn富集现象依然很明显,C在马氏体板条间富集;随着C配分时间的延长,实验钢抗拉强度不断减小,延伸率均呈先增加后降低趋势,在C配分时间为90 s时,IQP工艺下钢的强塑积达到23478 MPa·%;IQP工艺中预先Mn配分处理,使得实验钢在一次淬火时保留更多的奥氏体,随后C配分促使更多的C原子扩散到这些奥氏体中,从而二次淬火至室温获得更多残余奥氏体.IQP工艺中C,Mn的综合作用稳定的残余奥氏体体积分数比相同条件下QP工艺中C配分稳定的残余奥氏体体积分数最大增多2.4%左右.  相似文献   

13.
采用激光相变硬化工艺对T10钢表面进行改性处理,并对改性后的组织与性能进行研究.结果表明,硬化区组织为针状马氏体 少量残余奥氏体;热影响区组织为少量针状马氏体 珠光体 网状渗碳体;基材组织为珠光体 网状渗碳体.淬硬层表面的洛氏硬度最高值为63.5HRC,淬硬层内的显微硬度分布均匀,从硬化IX---,热影响区-基材显微硬度呈梯度变化.激光相变硬化后淬硬层耐磨性比常规淬火后耐磨性提高10%左右.  相似文献   

14.
采用YLS-3000型光纤激光器对40Cr钢表面进行不同间距的网格扫描激光相变硬化。研究不同网格间距对硬化层的显微组织、硬度、耐磨性和耐蚀性的影响。结果表明:激光相变硬化层横截面由表及里依次可分为相变硬化区、过渡区和基体。相变硬化区的组织为细小针状马氏体+少量残余奥氏体,过渡区的组织为马氏体+残余奥氏体+铁素体+未溶碳化物,基体的组织为铁素体+珠光体。网格扫描相变硬化层的平均硬度约为61 HRC,网格交叉点的平均硬度可达62 HRC。随着网格间距的增加,试样的相对耐磨性先增大再减小,当网格间距为12 mm时,相对耐磨性可达基体的3.25倍。同时,此间距试样的钝化区间最宽,约为1530 m V,耐蚀性最强。  相似文献   

15.
采用SEM、TEM、XRD、室温拉伸等手段,研究了0.1C-7.2Mn钢两相区温轧淬火配分处理钢的组织形貌、碳化物析出、残留奥氏体体积分数及其中的C含量及力学性能。结果表明,随着温轧压下率的增大,两相区温轧淬火配分处理后试样的马氏体板条得到细化并逐渐平行于轧制方向;两相区温轧淬火配分处理后试样的显微组织由马氏体和残留奥氏体组成,并且有碳化物析出;随着温轧压下率的增大,碳化物的平均尺寸粗化,残留奥氏体的体积分数逐渐升高,并且残留奥氏体中的C含量先升高后降低,屈服强度和抗拉强度均先升高后降低,伸长率先降低后升高。当温轧压下率为80%时,强塑积达到最高31.50 GPa·%。  相似文献   

16.
研究了经临界退火和不同温度回火后多相组织低合金钢中残余奥氏体对塑性和韧性的影响.结果表明,实验钢经两相区临界退火和不同温度回火后,获得了临界铁素体、回火马氏体/贝氏体以及体积分数分别为2%,5%,10%的残余奥氏体多相组织.含有不同体积分数残余奥氏体的多相组织钢强度差异不大,其屈服强度介于540~590 MPa,抗拉强度介于720~780 MPa.残余奥氏体含量对塑性和韧性影响显著.随着残余奥氏体含量的增加,实验钢的均匀延伸率和断后延伸率分别从10.3%和23.8%提高到20.4%和33.8%.塑性的提高主要是由于残余奥氏体在拉伸过程中逐步发生马氏体相变,从而提供持续的加工硬化能力,推迟颈缩的发生.残余奥氏体对韧性的改善随着冲击测试温度的降低变得更加显著.冲击温度高于-60℃时,不同体积分数的残余奥氏体实验钢的冲击功均在120 J以上,当冲击实验温度为-80℃时,残余奥氏体含量仅2%的实验钢的冲击韧性仅14 J,而含有残余奥氏体体积分数约10%的实验钢在-80和-100℃的冲击功仍然保持在60~80 J.残余奥氏体的存在有利于提高低温冲击过程中的塑性变形能力,延迟起裂,提高起裂功,从而有利于获得优异的低温冲击韧性.  相似文献   

17.
用18Cr2Ni4WA钢,经渗碳、淬火和冷处理,以获得不同残留奥氏体含量的试样,进行了与T10钢金属盘对磨的边界润滑磨损试验研究.结果表明,磨损过程中确实存在摩擦诱发马氏体相变,且碳含量低的残留奥氏体较碳含量高的残留奥氏体更易发生诱发相变;摩擦诱发马氏体对提高材料的耐磨性是有利的,而残留奥氏体对耐磨性的影响却存在一个临界应力σc;当外加应力>σc时,残留奥氏体对提高材料的耐磨性有利;当外加应力<σc时,残留奥氏体对提高材料的耐磨性不利,并且当残留奥氏体和外加应力搭配适当时,耐磨性可达最高值.  相似文献   

18.
采用部分奥氏体化-淬火-配分工艺对中锰钢进行热处理,研究不同淬火温度对微观组织和力学性能的影响。试验结果表明:随着淬火温度的升高,试验钢的伸长率先升高后降低,而抗拉强度却逐渐降低。淬火温度为140 ℃时,试验钢中一次马氏体和新生马氏体的体积分数之和最大,因此抗拉强度最高。淬火温度为180 ℃时,试验钢中残留奥氏体的体积分数最大,伸长率最高,综合力学性能最好,强塑积最高为30 328.2 MPa·%。而淬火温度升到200 ℃时,由于试验钢中残留奥氏体的含量减少以及新生马氏体的硬度降低,其伸长率和抗拉强度均降低。  相似文献   

19.
利用等离子熔凝技术,选择合适的工艺参数,在硼铸铁基体上进行熔凝硬化处理。借助于金相显微镜(OM)、X射线衍射仪(XRD)、扫描电镜(SEM)分析了硬化层的显微组织,采用显微硬度计测试了硬化层的显微硬度分布,通过环-块磨损试验评估了硬化层的耐磨性能。结果表明,硼铸铁表面微熔硬化处理后,熔凝区组织为细小均匀的共晶莱氏体+少量未溶石墨,固态相变区的组织为针状马氏体+残余奥氏体+片状石墨+磷共晶,相变区与基体交界处组织为针状马氏体+珠光体+残余奥氏体+片状石墨+磷共晶。熔凝层显微硬度分布均匀,可达820~910 HV0.1,在室温润滑滑动磨损条件下,硬化层的耐磨性约是基体试样的3倍。  相似文献   

20.
对C-Si-Mn冷轧低碳钢进行了淬火与配分(Q&P)处理.利用热膨胀仪、光学显微镜、扫描电镜、电子万能试验机、X射线衍射等实验手段,研究了实验钢奥氏体化温度和奥氏体化保温时间对相变组织的影响,并探讨了显微组织和力学性能随Q&P工艺中配分温度和配分时间等工艺参数的变化规律.结果表明,Q&P配分温度和配分时间强烈影响最终残留奥氏体含量.本实验中最佳配分工艺下,残留奥氏体量(体积分数)可以达到10%以上,从而使试验钢具有良好的强塑积.其伸长率约15.5%,抗拉强度为1352 MPa,强塑积可达到21000 MPa·%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号