首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Mixing by gas injection is an operation used in industrial processes such as wastewater treatment, metallurgy, or methanization in which pressurized gas is injected into a fluid in order to reduce concentrations and temperatures gradients. This study demonstrates how the CFD toolbox OpenFOAM can be used to simulate such flows. Experimental measurements and observations have been performed on a pilot-scale reactor where pressurized air is injected in a yield stress fluid. The volume of fluid method and an adaptive mesh with refinement at the interface have been used to track the gas inclusions. The numerical model accuracy has been assessed by comparing experimental and numerical results related to the bubble's frequency, dimensions, and rising velocities as well as the fluid recirculation, yielded, and unyielded regions in the tank. The influence of injection parameters such as the injection flow rate and the fluid rheological parameters has been quantified.  相似文献   

2.
This study is in line with two previous studies by the same authors on gas injection in yield stress fluids. Gas is injected toward the bottom wall of a prismatic tank containing a yield stress fluid. When rising toward the free surface, trains of bubbles generate fluid recirculation in the tank. Two experimental colorimetric methods are introduced and validated in order to quantify the recirculation liquid flow rate as well as the time evolution of the extent and shape of the mixed volume. The influences of the injection flow rate, fluid rheology, and reactor size have been quantified. Correlations based on the characteristic nondimensional numbers of the flow have been developed to predict the downward liquid flow rate as well as the mixed volume. A model for estimating the mixing time is also developed and compared to experimental results.  相似文献   

3.
The present work is devoted to determine the magnitude of the main parameters that yield the optimum results for twin-fluid nozzles with an internal mixing chamber. The focus is placed on the study of the interaction of both air and liquid flows at the internal chamber and its effects on the resulting spray. To this end, some experiments have been performed for different air central channel diameters and liquid ports, as well as for several experimental conditions (air and liquid mass flow rates), in order to understand the influence of the flow conditions at the mixing chamber on the size of the droplets produced. It has been demonstrated that under certain experimental conditions the atomizing fluid discharged to the internal chamber is choked. The sonic condition is achieved for different air and liquid mass flow rates as a function of the air central channel diameter. It has also been obtained that to achieve the best results with moderate atomizing fluid flow rates, it is convenient to operate in choked conditions. This is an important result that will help in the optimum design of this type of nozzles.  相似文献   

4.
CAVERN SIZES IN AGITATED FLUIDS WITH A YIELD STRESS   总被引:3,自引:0,他引:3  
Highly viscous, non-Newtonian Xanthan gum solutions and two transparent model fluids with similar Theological properties have been studied under aerated (up to 1 vvm) and unaerated conditions in a 0.29m diameter agitated vessel. Rushton disc turbines of size 1/3 and 1/2 of the tank diameter have been used alone and also in conjunction with 6-bladed, 45°-pitch axial flow turbines of the same size at speeds up lo 24 rev/s, enabling specific power inputs of up to 15 W/kg to be imparted.

Flow patterns were studied by flow visualisation and hot film anemometry. When the fluids have a yield stress, the fluid divides into a turbulent well-mixed cavern which increases in size with increasing speed with the remainder stagnant. A model for the size of the cavern fits the experimental data well for both aerated and unaerated mixing. Large diameter combinations produce good mixing at about 1 to 2 W/kg which is about 1/3 to 1/4 of that required with small diameter combinations. Single disc turbine impellers are unsatisfactory.  相似文献   

5.
Highly viscous, non-Newtonian Xanthan gum solutions and two transparent model fluids with similar Theological properties have been studied under aerated (up to 1 vvm) and unaerated conditions in a 0.29m diameter agitated vessel. Rushton disc turbines of size 1/3 and 1/2 of the tank diameter have been used alone and also in conjunction with 6-bladed, 45°-pitch axial flow turbines of the same size at speeds up lo 24 rev/s, enabling specific power inputs of up to 15 W/kg to be imparted.

Flow patterns were studied by flow visualisation and hot film anemometry. When the fluids have a yield stress, the fluid divides into a turbulent well-mixed cavern which increases in size with increasing speed with the remainder stagnant. A model for the size of the cavern fits the experimental data well for both aerated and unaerated mixing. Large diameter combinations produce good mixing at about 1 to 2 W/kg which is about 1/3 to 1/4 of that required with small diameter combinations. Single disc turbine impellers are unsatisfactory.  相似文献   

6.
The study was carried out to simulate the 3D flow domain in the mixing of pseudoplastic fluids possessing yield stress with anchor impellers, using a computational fluid dynamics (CFD) package. The multiple reference frames (MRF) technique was employed to model the rotation of the impellers. The rheology of the fluid was approximated using the Herschel–Bulkley model. To validate the model, the CFD results for the power consumption were compared to the experimental data. After the flow fields were calculated, the simulations for tracer homogenization were performed to simulate the mixing time. The effects of impeller speed, fluid rheology, and impeller geometry on power consumption, mixing time, and flow pattern were explored. The optimum values of c/D (impeller clearance to tank diameter) and w/D (impeller blade width to tank diameter) ratios were determined on the basis of minimum mixing time.  相似文献   

7.
Aerated stirred vessels are commonly employed to enhance gas dispersion. However, the associated high energy consumption is a challenging feature, particularly when dealing with complex non-Newtonian fluids. Coaxial mixers comprising a central impeller and a close-clearance impeller have emerged as an energy-efficient alternative that effectively intensifies gas dispersion. Hence, the objective of this study is to investigate the effect of aeration and agitation on the gas dispersion effectiveness of a coaxial mixer containing a yield-pseudoplastic fluid. An anchor-pitched blade turbine was employed to disperse air into a 1 wt.% xanthan gum solution, and the analysis primarily focused on characterizing the gas holdup and fluid flow behaviour. Gas holdup data were obtained experimentally using electrical resistance tomography (ERT), while computational fluid dynamics (CFD) simulations provided a detailed analysis of fluid flow patterns within the coaxial mixer. The rotational speed of the impeller exhibited a non-monotonic effect on the gas holdup, and a significant influence of the interaction between variables was identified. For instance, the experimental data showed that the aeration effect varied with the anchor speed. Nevertheless, the variables' interaction effect was explained by the change in flow pattern observed numerically. Furthermore, the CFD results demonstrated that high gas holdup does not necessarily indicate intensified mixing. Therefore, combining experimental data and numerical simulations enables a more accurate characterization of mixing performance. These findings contribute to the understanding and improvement of mixing performance in such a complex system, which is crucial for designing efficient operations.  相似文献   

8.
Experiments have been carried out to study the individual phase holdup characteristics in a cocurrent three‐phase fluidized bed. An antenna type modified air sparger has been used in the gas–liquid distributor section, for uniform mixing of the fluids with the gas moving as fine bubbles to the fluidizing section. This arrangement also reduces the pressure drop encountered through a conventional distributor used for the purpose. To overcome the non‐uniformity of flow through the column (i.e., the central region), a distributor plate with 20% open area has been fabricated with concentric circular punched holes of increased diameter from centre to the wall. Model equations have been developed by factorial design analysis for predicting various individual phase holdups.  相似文献   

9.
低高径比气升式环流反应器数值模拟分析   总被引:1,自引:0,他引:1  
利用商用计算流体力学软件Fluent,利用Euler-Euler双流体模型,重点针对好氧反应的特点,对一种具有低高径比(H/D=1.67)的环流气升式反应器内的气液两相流动及混合性能进行研究,描述出反应器内气含率和环流液速等参数的详细分布,分析模拟结果,气液速度分布和气含率分布等与实际情况基本吻合,从而证实了计算结果的有效性,为工业实际应用提供一定参考。  相似文献   

10.
The influence of viscoelastic flow properties on fluid dynamics using radial impellers is investigated. The use of transparent model fluids allows for the optical measurement of general flow behavior with a fluorescence dying technique. By varying viscoelastic flow properties, size of agitators and rotational frequency, the impact of these parameters on fluid dynamics is analyzed. Toroidally shaped, cavern‐like flow compartments form around the agitators in all fluids in specific rotational frequency ranges, preventing an efficient mixing. By balancing elastic with centrifugal forces, a simple model is developed with which compartment sizes can be predicted with good accuracy. The results indicate a good suitability of the elasticity number as a scale‐up criterion.  相似文献   

11.
The mechanism of electrostatic spraying of insulating fluids, such as air or organic solvents, into relatively conductive fluids, such as water, is investigated in this work. Experiments with air sprayed into water through an electrified capillary showed that the pressure inside the capillary increases, reaches a maximum, and then decreases as the applied voltage is increased. The initial pressure increase is due to the electric stress on the fluid interface, while the decrease is due to the Coulombic electrohydrodynamic flow generated near the end of the capillary. It is shown that electric fields can cause simultaneous pumping, spraying, and mixing of fluids. This phenomenon is demonstrated for air and kerosene in water.  相似文献   

12.
In the present work, the impeller in the conventional gas‐liquid mixed vessels was replaced by a fluid jet as the mixer. Using an experimental setup, the effect of several parameters on the mixing time as a measure of the liquid‐phase mixing intensity, which is one of the required transport characteristics for designing gas‐liquid mixed systems, was studied. The results show that gas injection decreases the mixing time in comparison with the ungassed condition, but the mixing time is not necessarily decreased by increasing the gassing rate. On the basis of the amount of the jet Reynolds number and gassing rate, and thus the created circulation pattern, the mixing time may be decreased or increased. Also, the location of the probe for cases in which there are more dead zones in the vessel have a considerable effect on the measured mixing time. With increasing uniformity of the velocity domain, the influence of the probe location was reduced. Also, by increasing the jet flow rate and decreasing the nozzle diameter, the length of the jet, the amount of entrained bulk fluid, and the intensity of recirculation flow increased, and thus the mixing time decreased.  相似文献   

13.
The drag of a cylindrical obstacle moving at a constant velocity in a yield stress fluid close to a wall is studied experimentally and numerically. The wall influence has been explored for gap values between the cylinder of diameter D and the wall ranging from 0.01D to 100D, which corresponds, respectively, to hydrodynamic lubrication and to unconfined domain conditions. A model yield stress fluid (Carbopol gel) is used in the experiments. The viscous and plastic drag coefficients have been calculated and measured as depending on the Oldroyd number, in conditions where the yield stress effects are more important than those of viscosity and the inertia negligible. We have performed experimental and numerical validations in the Newtonian case and provided more specifically comparisons of our measured data on yield stress materials with those resulting from viscoplastic flow simulations. © 2018 American Institute of Chemical Engineers AIChE J, 64: 4118–4130, 2018  相似文献   

14.
The flow field inside a cylindrical mixing vessel was visualized by electrical resistance tomography (ERT), a non‐intrusive measurement technique. Six tomography planes, each containing 16 sensing electrodes, measured the mixing time in the agitation of pseudoplastic fluid exhibiting yield stress. The effects of various parameters such as impeller types, impeller speed, fluid rheology, power consumption, Reynolds number, and absence of baffles on the mixing time were investigated. The Maxblend impeller was able to improve the mixing performance of non‐Newtonian fluids in a batch reactor. The mixing quality could be further enhanced by decreasing the xanthan gum concentration and using baffles in the mixing vessel.  相似文献   

15.
The 3D flow field generated by a Scaba 6SRGT impeller in the agitation of xanthan gum, a pseudoplastic fluid with yield stress, was simulated using the commercial CFD package. The flow was modeled as laminar and a multiple reference frame (MRF) approach was used to solve the discretized equations of motion. The velocity profiles predicted by the simulation agreed well with those measured using ultrasonic Doppler velocimetry, a non-invasive fluid flow measurement technique for opaque systems. Using computed velocity profiles across the impeller, the effect of fluid rheology on the impeller flow number was investigated. The validated CFD model provided useful information regarding the formation of cavern around the impeller in the mixing of yield stress fluids and the size of cavern predicted by the CFD model was in good agreement with that calculated using Elson's model.  相似文献   

16.
屈服应力型流体(YSFs)是一种典型的非牛顿流体,因其丰富的流变特性被广泛关注。屈服应力是高浓度的粒子分散系统和凝胶状物质(多相乳液、微胶囊、3D打印复杂结构、药物输送凝胶等)的基本特征。本文对微通道内简单屈服应力型流体的流动特征和流变行为,及其流变性对多相流系统的影响进行了综述,剖析了受限空间内流体流动与流体流变性,及多相流动力学和界面现象的耦合机制,并对亟需推进的研究方向进行了展望。为微通道内屈服应力型流体的数值模拟、实验研究和应用提供参考。  相似文献   

17.
粘稠物系流变特性对螺带桨混合性能影响的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
何永福  戴干策 《化工学报》1989,40(5):597-605
选用流变性质不同的三种物系:糖浆、CMC溶液、鲍格流体,在直径为0.286m的釜内,以不同结构的螺带桨进行搅拌,测定了功率、混合时间、速度分布和流型。分析了流变性质如粘度的剪切依赖性、弹性等对这些性能的影响,并在流型观测的基础上对功率、混合时间的变化规律作了解释。  相似文献   

18.
应用DPM模型对新型催化裂化短接触旋流反应器内的颗粒分布特性进行数值模拟,主要考察混合腔内气、固两相速度与浓度分布的基本特征。模拟结果表明:1~30μm粒径颗粒受到重力场和旋流场的作用,在混合腔内沿气流方向旋转扩散,充满整个混合区域且逐渐螺旋下行;而50、70、100μm粒径的颗粒由于粒径相对较大,不易被气流夹带,在混合腔内的流动更为复杂,浓度分布的不均匀度增大。研究结果为新型反应器的设计和优化提供了重要理论依据。  相似文献   

19.
The hydrodynamic behavior of a bubble column has been studied for various Newtonian and non-Newtonian liquids (water, glycerol, carboxymethylcellulose and polyacrylamide solutions). The mixing time, the power consumption, the circulation time and the gas hold-up have been measured in a cylindrical column (diameter: 0.254 m, height: 0.9 m) for three air sparger plates with different numbers and distributions of 1 mm diameter orifices. It is shown that the mixing efficiency decreases as the viscosity or the shear-thinning and elastic properties of the liquid increase. The viscosity of the liquid has little influence on the gas hold-up which is, however, strongly affected by the sparger plate characteristics and increases as the liquid phase becomes more elastic. A model for predicting gas hold-up is proposed.  相似文献   

20.
Bubble formation from an orifice submerged in quiescent polyacrylamide aqueous solution was investigated numerically with a sharp‐interface coupled level‐set/volume‐of‐fluid method based on the rheological characteristics of the fluid. In both non‐Newtonian fluids and Newtonian fluids, the numerical approach was able to capture accurately the deformation of the bubble surface, validated by comparison with experimental results. The effects of orifice diameter, solution mass concentration, and gas flow rate on bubble volume and aspect ratio were evaluated. Both the instantaneous and detached volume decrease with the orifice diameter but increase with mass concentration and gas flow rate. The aspect ratio at the departing point tends to rise with the orifice diameter and mass concentration and falls with the gas flow rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号