首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The melt rheological properties of linear low‐density polyethylene (LLDPE)/ethylene vinyl acetate (EVA) blends were investigated with special reference to the effect of blend ratio, temperature, shear rate, compatibilization, and dynamic vulcanization. The melt viscosity of the blends determined with a capillary rheometer is found to decrease with an increase of shear rate, which is an indication of pseudoplastic behavior. The viscosity of the blend was found to be a nonadditive function of the viscosities of the component polymers. A negative deviation was observed because of the interlayer slip between the polar EVA and the nonpolar LLDPE phases. The melt viscosity of these blends decreases with the increased concentration of EVA. The morphology of the extrudate of the blends at different shear rates and blend ratios was studied and the size and distribution of the domains were examined by scanning electron microscopy. The morphology was found to depend on shear rate and blend ratio. Compatibilization of the blends with phenolic‐ and maleic‐modified LLDPE increased the melt viscosity at lower wt % of compatibilizer and then leveled off. Dynamic vulcanization is found to increase the melt viscosity at a lower concentration of DCP. The effect of temperature on melt viscosity of the blends was also studied. Finally, attempts were made to correlate the experimental data on melt viscosity and cocontinuity region with different theoretical models. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3210–3225, 2002  相似文献   

2.
The melt rheological behavior of high‐density polyethylene (HDPE)/ethylene vinyl acetate (EVA) blends has been examined with reference to the effect of blend ratio, shear stress, and temperature. The HDPE/EVA blends exhibit pseudoplastic behavior, and the observed rheological behavior of the blends was correlated with the extrudate morphology. The experimental values of the viscosity were compared with the theoretical models. The effect of maleic‐ and phenolic‐modified PE compatibilizers on the viscosity of H70 blend was analyzed and found that compatibilization did not significantly increase the viscosity. The effect of dynamic vulcanization and temperature on the viscosity was also analyzed. The activation energy of the system decreased with increase in EVA content in the system. The phase continuity and phase inversion points of the blends were theoretically predicted and compared with the experimental values. The melt flow index (MFI) values of the blends were also determined and found that the MFI values decreased with increase in EVA content in the system. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

3.
Two commercial polymer materials, metallocene linear low density polyethylene (m‐LLDPE) and ethylene/vinyl acetate copolymer (EVA) have been used to form binary blends of various compositions. The mechanical properties, morphology, rheological behavior, dynamic mechanical properties, and crystallization of m‐LLDPE/EVA blends were investigated. It was found that with the addition of EVA, the fluidity and processability of m‐LLDPE were significantly improved, and the introduction of polar groups in this system showed no significant changes in mechanical properties at lower EVA content. As verified by morphology observation and differential scanning calorimetry analysis, miscible blends were formed within certain weight ratios. Dynamic mechanical property studies showed that flexibility of the blends was enhanced in comparion with pure m‐LLDPE, where the peak value of loss modulus shifted to lower temperature and its intensity was enhanced as EVA content increased, indicating the existence of more amorphous regions in the blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 905–910, 2004  相似文献   

4.
In this work, blends of poly(butylene terephthalate) (PBT) and linear low‐density polyethylene (LLDPE) were prepared. LLDPE was used as an impact modifier. Since the system was found to be incompatible, compatibilization was sought for by the addition of the following two types of functionalized polyethylene: ethylene vinylacetate copolymer (EVA) and maleic anhydride‐grafted EVA copolymer (EVA‐g‐MAH). The effects of the compatibilizers on the rheological and mechanical properties of the blends have been also quantitatively investigated. The impact strength of the PBT–LLDPE binary blends slightly increased at a lower concentration of LLDPE but increased remarkably above a concentration of 60 wt % of LLDPE. The morphology of the blends showed that the LLDPE particles had dispersed in the PBT matrix below 40 wt % of LLDPE, while, at 60 wt % of LLDPE, a co‐continuous morphology was obtained, which could explain the increase of the impact strength of the blend. Generally, the mechanical strength was decreased by adding LLDPE to PBT. Addition of EVA or EVA‐g‐MAH as a compatibilizer to PBT–LLDPE (70/30) blend considerably improved the impact strength of the blend without significantly sacrificing the tensile and the flexural strength. More improvement in those mechanical properties was observed in the case of the EVA‐g‐MAH system than for the EVA system. A larger viscosity increase was also observed in the case of the EVA‐g‐MAH than EVA. This may be due to interaction of the EVA‐g‐MAH with PBT. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 989–997, 1999  相似文献   

5.
BMDPE/LDPE/LLDPE共混熔体的流变行为与力学性能   总被引:1,自引:0,他引:1  
研究了双峰中密度聚乙烯(BMDPE),低密度聚乙烯(LDPE)与线型低密度聚乙烯(LLDPE)共混熔体的流变行为和力学性能,讨论了共混物的组成,剪切应力和剪切速率以及温度对熔体流变行为,熔体粘度和膨胀比的影响,测定了不同配比熔体的非牛顿指数,熔体流动速率,粘流活性能及屈服应力,断裂应力和断裂伸长率,为BMDPE的加工和使用以及开发高性能价格比的PE材料提供了依据。  相似文献   

6.
秦江雷  高俊刚  姚子华 《塑料工业》2005,33(Z1):150-153
用毛细管流变仪研究了共聚聚丙烯(cPP)与线型低密度聚乙烯(LLDPE)共混物熔体的流变行为.讨论了共混物的组成、切应力和剪切速率对熔体流变行为和熔体粘度的影响.测定了不同配比共混物熔体的非牛顿指数.结果表明共混物熔体属假塑性流体,但共混体系粘度随LLDPE加入量的增加变化不大.DSC结晶曲线及扫描电镜(SEM)照片表明,LDPE的加入使cPP的结晶温度变化不大,但对晶体形态有一定影响.LLDPE对cPP有一定的增韧改性作用,当LLDPE质量分数为15%时,共混物的冲击强度增幅在40%左右,而拉伸强度保持率为80%.  相似文献   

7.
The objective of this research is to investigate the physiochemical and rheological properties of waste cooking oil (WCO)/styrene-b-butadiene-b-styrene/ethylene vinyl acetate (SBS/EVA) composite modified asphalt. A petroleum asphalt composite modified with SBS/EVA and oil/SBS/EVA were prepared to undergo the physical, rheological, and microscopic experiments. Comparing these tests results with the properties of unmodified petroleum asphalt, SBS and EVA cause an improvement in pavement performance, but weaken the storage stability. Although the high-temperature performance undermined by the addition of WCO, the thermal stability, fatigue property, and low temperature crack resistance improved obviously. In addition, WCO mainly composed by low-weight components, and these can supplement the light components in the polymer-modified asphalt. EVA could increase the percentage of large molecular size of asphalt, while WCO relieves this trend. The reactions between WCO and these polymers (SBS and EVA) are physical reactions. Atomic force microscopy morphology results reflect that SBS and EVA increase the surface complexity and roughness, and WCO makes the asphalt surface smooth. This indicates WCO increases the dispersion of polymers in asphalt. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48828.  相似文献   

8.
In this study, various poly(ethylene terephthalate) (PET) and linear low‐density polyethylene (LLDPE) with maleic anhydride‐grafted LLDPE (LLDPE‐g‐MAH) compatibilizer were melt blended under an elongational flow. A novel extrusion device, eccentric rotor extruder (ERE), was developed to supply such flow during the process. Including morphology, mechanical properties, melting behavior, and rheological behavior were studied. The morphological study showed that the compatibility between LLDPE and PET was greatly improved with LLDPE loading up to 80 wt %. Mechanical tests indicated that LLDPE could toughen PET to some extent. Moreover, a comparison of samples prepared between ERE and conventional extruder was made and demonstrated the sample prepared by ERE can exhibit better mechanical properties. Differential scanning calorimetry results revealed that PET can promote the crystallinity of LLDPE. Rheological behavior indicated that the complex viscosity of the blends exhibited strong shear thinning phenomenon with increasing LLDPE content, particularly in high‐frequency range blend with the LLDPE weight ratio of 80 wt % was more sensitivity to shear rate than neat LLDPE. The G′‐G″ curves of the blends also revealed that the microstructure of the blends changed significantly with the addition of LLDPE which was consistent with the scanning electron micrographs that PET particles became smaller and distributed more uniform with increasing LLDPE content. Furthermore, the blends showed similar stress relaxation mechanism with adding LLDPE content from 60 to 100 wt %. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46489.  相似文献   

9.
High density polyethylene (HDPE)/ethylene‐vinyl acetate copolymer (EVA) blends with selective crosslinking the EVA phase were prepared and the crystallization, rheological, and mechanical behaviors were studied. Selective crosslinking of EVA component could greatly improve both tensile and impact strengths of the HDPE‐rich blends and influence melting enthalpy at different annealing temperature in successive self‐nucleation and annealing procedure. Dynamic mechanical analysis reveals that glass transition temperatures of both the HDPE and EVA components are lowered upon blending and are raised upon crosslinking. The uncrosslinked HDPE/EVA blends are unstable in the melt and show increment in storage modulus (G′) and decay in loss tangent (tanδ) with annealing time associated with phase coarsening. However, morphology of selectively crosslinked blends in the melt state is highly unstable, characterized by a fast migration of uncrosslinked HDPE component out of the crosslinked EVA phase to the surface resulting in a rapid decay in G′ and an increment in tanδ at the early stage of annealing. POLYM. ENG. SCI., 54:2848–2858, 2014. © 2014 Society of Plastics Engineers  相似文献   

10.
Conducting polymer composites constituted by co-continuous poly (vinylidene fluoride) (PVDF)/ ethylene- vinyl acetate copolymer (EVA) blends with multiwalled carbon nanotube (CNT) were prepared by melt mixing using different procedures. The effect of the master batch approach on the conductivity, morphology, mechanical, thermal and rheological properties of PVDF/EVA/CNT nanocomposites was compared with that based on one step mixing strategy. The selective extraction experiments revealed that CNT was preferentially localized in the EVA phase in all situations, even when PVDF@CNT master batch was employed. Nanocomposites prepared with EVA@CNT master batch displayed higher conductivity, whose value reached around 10−1 S m−1 with the addition of 0.56 vol% of CNT. The better electrical performance was attributed to the better distribution of the filler, as indicated by transmission electron microscopy and rheological behavior. The electrical and rheological behavior were also investigated as a function of the CNT content.  相似文献   

11.
In this paper, the implications of melt compatibility on thermal and solid‐state properties of linear low density polyethylene/high density polyethylene (LLDPE/HDPE) blends were assessed with respect to the effect of composition distribution (CD) and branch content (BC). The effect of CD was studied by melt blending a metallocene (m‐LLDPE) and a Ziegler‐Natta (ZN) LLDPE with the same HDPE at 190 °C. Similarly, the effect of BC was examined. In both cases, resins were paired to study one molecular variable at a time. Thermal and solid‐state properties were measured in a differential scanning calorimeter and in an Instron mechanical testing instrument, respectively. The low‐BC m‐LLDPE (BC = 14.5 CH3/1000 C) blends with HDPE were compatible at all compositions: rheological, thermal and some mechanical properties followed additivity rules. For incompatible high‐BC (42.0 CH3/1000 C) m‐LLDPE‐rich blends, elongation at break and work of rupture showed synergistic effects, while modulus was lower than predictions of linear additivity. The CD of LLDPE showed no significant effect on thermal properties, elongation at break or work of rupture; however, it resulted in low moduli for ZN‐LLDPE blends with HDPE. For miscible blends, no effect for BC or CD of LLDPE was observed. The BC of LLDPE has, in general, a stronger influence on melt and solid‐state properties of blends than the CD. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
Electrically conductive blends based on polyaniline-dodecylbenzene sulphonic acid (Pani.DBSA)/styrene-butadiene-styrene (SBS) block copolymer have been prepared by two methods namely melt mixing and polymerization of aniline in the presence of SBS using in situ polymerization method. The influence of composition and synthetic methods on the performance of SBS/Pani blends was established. The obtained SBS/Pani blends have been characterized by mechanical, morphological and electrical properties. A great reduction in volume resistivity values with increase in Pani content was noticed for in situ polymerization method compared to melt mixing method. The microstructural parameters were also computed using Wide Angle X-ray Scattering (WAXS). The results are compared with mechanical and electrical properties.  相似文献   

13.
The rheological properties of blends consisting of a long chain branched low‐density polyethylene (LDPE) and two linear low‐density polyethylenes (LLDPE) are studied in detail. The weight fractions of the LDPE used in the blends are 5 and 15%. The linear viscoelastic characterization is performed at different temperatures for all the blends to check thermorheological behavior and miscibility in the melt state. Blends containing metallocene LLDPE as the matrix display thermorheologically complex behavior and show evidences of immiscibility in the melt state. The linear viscoelastic response exhibits the typical additional relaxation ascribed to the form deformation mechanism of dispersed phase droplets (LDPE). The Palierne model satisfactorily describes the behavior of these blends in the whole frequency range explored. However, those blends with Ziegler‐Natta LLDPE as the matrix fulfill the time‐temperature superposition, but exhibit a broad linear viscoelastic response, further than the expected for an immiscible system with a sharp interface. The rheological analysis reveals that, in addition to the droplets form relaxation, another mechanism at lower frequencies exists. The broad linear response of the blends with the Ziegler‐Natta LLDPE can be explained by hypothesizing a strong interaction between the high molecular weight linear fraction of the LLDPE and the low molecular weight (almost linear) chains of the LDPE phase, forming a thick interface with its own viscoelastic properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Linear low-density polyethylene (LLDPE)/polybutadiene (PB) and LLDPE/poly(styrene-b-butadiene-b-styrene) (SBS) binary blends were prepared by simple melt mixing or by reactive blending in the presence of a free-radical initiator, and for comparison, pure LLDPE was treated under the same conditions with a comparable free-radical initiator concentration. The effect of the reactive melt mixing on the morphology of the blends was studied with transmission electron microscopy, and the corresponding particle size distributions were analyzed and compared to highlight the effects of the crosslinking and grafting phenomena. Thermal properties of the obtained materials were investigated with differential scanning calorimetry and dynamic mechanical thermal analysis (DMTA). In particular, the effect of the reactive mixing parameters on the amorphous phase mobility was investigated. The influence of the chemical modification on the crystallization behavior of LLDPE, neat and blended with PB and SBS, was also studied with dynamic and isothermal differential scanning calorimetry tests, and the isothermal thermograms were analyzed in light of the Avrami equation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Insulation materials with low dielectric constants, low coefficients of thermal expansion (CTE), low densities, renewability, and low cost are urgently needed in the fields of communication, control and signal cables. Here we report that combining cyclic olefin copolymer (COC) with linear low-density polyethylene (LLDPE) by melt blending achieves the above goals. The dielectric constant and CTE of LLDPE/COC blends are minimized at 20 wt% COC content, reaching a value of 2.23 at 1000 Hz and 1.21 × 10−4 K−1, respectively. The density of the blend increases by only 1.6% compared with LLDPE, whereas the tensile modulus increases by 56%, which is conducive to the blends to improve mechanical strength while preserving lightweight. The rheological tests show that the zero-shear viscosity, storage modulus, and loss modulus of the LLDPE/COC blends do not change much compared with pristine LLDPE, maintaining their good melt processability at 160°C. The cyclic rigid structure of COC causes a decrease in CTE, and the increase in free volume between molecular chains is responsible for the reduced dielectric constant. The present work provides a promising route to the design and fabrication of melt-reprocessable polymer composites with low dielectric constant and low thermal expansion.  相似文献   

16.
The dynamic rheological behavior of low‐density polyethylene (LDPE)/ultra‐high‐molecular‐weight polyethylene (UHMWPE) blends and linear low‐density polyethylene (LLDPE)/UHMWPE blends was measured in a parallel‐plate rheometer at 180, 190, and 200°C. Analysis of the log–additivity rule, Cole–Cole plots, Han curves, and Van Gurp curves of the LDPE/UHMWPE blends indicated that the blends were miscible in the melt. In contrast, the rheological properties of LLDPE/UHMWPE showed that the miscibility of the blends was decided by the composition of LLDPE. The differential scanning calorimetry results and scanning electron microscopy photos of the LLDPE/UHMWPE blends were consistent with the rheological properties, whereas with regard to the thermal and morphological properties of LDPE/UHMWPE blends, the results reveal three endothermic peaks and phase separation, which indicated a liquid–solid phase separation in the LDPE/UHMWPE blends. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
Blends of an ethylene/vinyl acetate copolymer (EVA) and polyisobutylene of various compositions were prepared by mechanical mixing at a temperature above the melting point of EVA (TmEVA) but below the upper critical solution temperature of 170°C for given blends. The rheological properties of the components and blends were studied in the region of small‐amplitude oscillating deformation at temperatures above and below TmEVA in the frequency range of 0.01–100 rad/s. At temperatures lower than TmEVA, the rheological properties were determined by the existence of the yield stress. With diminishing frequency, the viscosity increased, and the plateau in the relaxation spectrum at low frequencies broadened. The morphology of the blends depended on the conditions of sample heating. The introduction of a finely dispersed filler into the blends led to an anomalous drop in the viscosity. The morphology of the systems that arose by mechanical blending of the molten components was the important factor in the rheological behavior. The observed effects were examined in the framework of the concept of structural networks formed in melts by nonmelted crystallites of EVA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2700–2707, 2006  相似文献   

18.
几种弹性体对HDPE共混改性的研究   总被引:2,自引:0,他引:2  
  相似文献   

19.
HDPE/poly(ethylene‐co‐vinylacetate) (EVA) and low‐density polyethylene (LDPE)/EVA blends were tested and compared with respect to their environmental stress cracking resistance (ESCR) using the Bell‐telephone test. The time to failure in the ESCR test improves with increasing EVA content, and considerable improvements were produced for LDPE/EVA blends while small improvements were observed for HDPE/EVA blends. Thermal, rheological, mechanical, and morphological studies were conducted which established a quantitative relationship between morphological features and composition. Furthermore, the failed specimens were further characterized by scanning electron microscopy and fractographic methodology to investigate the failure mechanism for ESCR samples. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39880.  相似文献   

20.
葛丽丽  吴集钱  李锦春 《化工进展》2014,33(7):1822-1825
通过熔融共混法制备了聚乳酸(PLA)/乙烯-乙酸乙烯酯共聚物(EVA)共混物,采用SEM、DSC、旋转流变仪等研究了VA质量分数为28%,熔体流动速率(MFR)不同的EVA对PLA/EVA共混物性能的影响。结果表明,EVA熔体流动速率越小,其在PLA基体中分散越均匀,EVA颗粒粒径也越小。共混物的结晶度随EVA熔体流动速率的增大而增大,但PLA的玻璃化转变温度(Tg)基本不受EVA的影响。PLA/EVA共混物的复数黏度和储能模量均随EVA的熔体流动速率的增高而减小。力学性能测试结果表明,当EVA的质量分数为15%时,PLA的断裂伸长率明显升高,冲击强度约是纯PLA的2倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号