首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
为研究胶结充填体在煤矿深部的高地温环境下发生卸荷的力学特性,采用RTX–4000型岩石动态三轴仪,对不同温度(20℃,35℃和50℃)养护后的胶结充填体进行不同初始卸荷围压下的常规三轴卸围压试验,得到胶结充填体三轴卸荷全过程的偏应力–应变曲线,分析其变形、破坏特征及强度准则。研究结果表明:50℃养护后的胶结充填体内部产生的有害热应力易使胶结充填体卸荷的应力–应变曲线在峰后阶段出现微破裂现象,进而使得变形模量在随围压卸载的过程中也出现突降和逆向增长。胶结充填体卸荷破坏形式主要为局部张拉裂纹、剪切裂纹以及由热损伤和力学损伤共同造成的错位裂纹。Mogi-Coulomb强度准则能更好地表征胶结充填体在增轴压卸围压条件下的卸荷破坏强度特征;随养护温度的升高,胶结充填体的黏聚力先减小后增大,内摩擦角先增大后减小,黏聚力的变化同卸荷峰值强度的变化规律一致,黏聚力越大,卸荷峰值强度越高,表明黏聚力为影响胶结充填体卸荷峰值强度的主要因素。  相似文献   

2.
对丹巴电站调压井围岩的片岩试样进行了加载试验和卸荷试验研究,分别分析了常规三轴试验及加轴压卸围压、以相同速率同时卸轴压与围压的3种加、卸载方式下的应力-应变关系及整个加、卸载过程中变形参数的变化规律,分析表明:片岩在卸荷条件下表现出明显的脆性破坏特征,而且有强烈的扩容现象,卸荷条件下岩石的破坏也是由于扩容所引起的;卸荷会造成岩体变形模量迅速减小、泊松比迅速增大;试验采取的两种卸荷方式与常规三轴相比较,岩石试样从受力至破坏的整个过程中其变形模量和泊松比的变化趋势有明显的不同,尤其是在相同速率同时卸轴压与围压的卸荷方式对岩石的变形参数影响很大。  相似文献   

3.
为分析端部摩擦对岩石力学参数的影响,采用RMT–150B岩石力学试验系统对砂岩试样进行不同端部摩擦因子和围压卸载速率下的三轴卸围压试验。结果表明:在相同端部摩擦因子和初始围压下,围压卸载速率越大,试样破坏围压越低,试样破坏差应力越大;在相同围压卸载速率和初始围压下,端部摩擦因子越大,试样破坏围压越低,试样破坏差应力也越大;在相同围压卸载速率下,试样内摩擦角φ和黏聚力c值整体上随端部摩擦因子增加近似直线增加;在相同端部摩擦因子下,试样内摩擦角φ和黏聚力c值整体上随围压卸载速率增大而增大,但增加速率逐渐降低。提出包含端部摩擦因子和围压卸载速率的end-friction(E-F)卸载强度准则,通过采用该准则对试样峰值强度和破坏围压的关系进行拟合分析,认为该准则能够较好地描述三轴卸围压破坏试样强度。若已知端部摩擦因子K值,可得到不同围压卸载速率v下岩石E-F卸载破坏强度包络线,进而获得不同围压卸载速率下岩石材料强度参数。  相似文献   

4.
 针对白鹤滩地下厂房开挖过程中所揭露的力学响应行为十分复杂的错动带,为研究其在高应力条件下的加卸荷力学特性,开展一系列不同应力水平和应力路径下的不排水三轴常规加、卸荷试验。研究结果表明:(1) 卸荷过程中,错动带卸荷应力–应变曲线特征与初始围压相关性很大,错动带向卸荷方向回弹变形显著,从卸围压开始即表现出强烈的剪胀现象;卸轴压卸围压方案比增轴压卸围压方案的侧向扩展变形表现更为显著;且在试样表面都出现了张/张剪裂纹。(2) 卸荷应力路径下,错动带变形模量劣化效应十分明显,随围压的减小而逐渐降低,基本呈三次多项式递减;体积模量随体积应变的增加而减小,整体呈负指数形式降低;泊松比则随体积应变逐渐增加,整体呈近似抛物线形式递增。(3) 相同初始围压条件下,相较于加荷条件,卸荷条件下错动带的破坏应力有所降低,内摩擦角明显增大,而黏聚力则明显降低;卸轴压卸围压方案下的破坏应力劣化更显著。试验所采用的应力水平和应力路径基本涵盖和反映了错动带在洞室开挖过程中所经历的复杂的应力重分布过程,具有一定的代表性,地下厂房开挖后高边墙错动带黏聚力和内摩擦角取值基本可参考卸轴压卸围压应力路径下天然含水率错动带的试验结果,为后续进一步讨论错动带强度特征并建立错动带本构模型提供了有效依据。  相似文献   

5.
不同应力路径大理岩物理力学参数变化规律   总被引:1,自引:0,他引:1  
基于大理岩常规三轴加荷与卸荷试验结果,分析加卸荷应力路径下大理岩各阶段特征应力、黏聚力c、内摩擦角φ在变形破坏中的变化规律。试验结果表明,相同卸荷速率条件下,压密应力对应的环向应变、体积应变随围压的增大而减小,起裂应力及扩容应力随围压增大而增大,加卸荷应力路径下扩容应力对应的环向应变均稳定在(-0.000 4±0.000 1)范围内。大理岩卸荷破坏的初始屈服面和后继屈服面均符合Mogi-Coulomb函数形式,峰值强度前黏聚力c随塑性参数εps的增大而减小,内摩擦角φ随塑性参数εps的增大而增大。  相似文献   

6.
高围压、高水压条件下岩石卸荷力学性质试验研究   总被引:2,自引:2,他引:0  
 为探悉某深埋长引水隧洞围岩在高地应力、高水压力条件下的稳定性,对隧洞的主要岩体大理岩、砂岩和板岩进行常规三轴压缩试验、峰前峰后卸围压试验以及高水压力下的卸荷试验,对此过程中的强度和变形特征进行较为系统的对比分析研究。研究结果表明:卸围压对岩石的强度影响很大。卸荷后,岩石的黏聚力和内摩擦角均有较大幅度的降低,特别是有水压时,降低更是明显;卸荷对黏聚力的影响比对内摩擦角的影响大。卸荷后,黏聚力的降低幅度比内摩擦角要大;峰前卸荷对岩石强度的影响比峰后卸荷要大。峰前卸荷,岩石破坏时围压比峰后卸荷高;有水压卸荷对岩石强度的影响比无水压卸荷要大。有水压时卸荷,由于水压的存在,削弱围压对岩石的影响,使岩石在比无水压卸荷时更高的围压下即发生破坏。  相似文献   

7.
锦屏大理岩加、卸载应力路径下力学性质试验研究   总被引:11,自引:7,他引:4  
 地下岩体开挖卸荷应力路径不同于加载应力路径,由此引起的岩体强度、变形特征和破坏机制也不尽相同。针对锦屏二级水电站引水隧洞群围岩赋存于高地应力环境的特点,对其中3# 引水隧洞大理岩开展单轴加、卸载以及三轴压缩和高应力条件下的峰前、峰后卸围压等4种不同应力路径力学试验,得到了的应力–应变全过程曲线、变形破坏特征和主要力学参数的变化规律。试验研究结果表明:(1) 建立在岩样单轴逐级等量加、卸载应力路径下的回滞环面积递减,尤以屈服阶段的卸载对应变影响最大;(2) 不同围压下岩样三轴压缩全过程试验结果表明,当围压达到40 MPa时,应变软化特性转化为理想塑性,可以认为该值为锦屏大理岩脆-延转化点;(3) 对比以上不同应力路径下的强度准则方程以及峰前、峰后黏聚力和内摩擦角,相同初始应力条件下,岩石卸载破坏所需应力变化量比三轴压缩破坏情况下对应的应力变化量小,说明岩石卸载更容易导致破坏;(4) 在变形破坏机制方面,由于峰后比峰前卸围压塑性变形大,岩样塑性变形已吸收较多的弹性变形能,其脆性特性受到抑制,因而不像峰前卸围压破坏具有突发性,岩样由张性破坏过渡到张剪性破坏;(5) 根据大理岩岩样加、卸载破坏断口SEM扫描结果,从细观角度验证了脆性岩石在不同路径下微观剪断裂破坏机制。总之,以上研究结果揭示了锦屏大理岩加、卸载应力路径下力学特性差异,对解决工程实际问题具有重要的参考价值。  相似文献   

8.
含天然节理灰岩加、卸荷力学特性试验研究   总被引:2,自引:1,他引:1  
为模拟一般地下节理岩体开挖加卸荷效应,进行含天然节理灰岩试样的加轴压、卸围压应力控制试验及常规三轴压缩试验,得到2种试验条件下的全应力-应变曲线.对试验后的岩样破坏特征、强度和变形特性的分析结果表明:无论是常规三轴压缩还是加轴压卸围压试验,其破坏均有沿节理面和穿切节理面2种方式.常规三轴压缩表明,当节理面与最大主应力夹角<40°时,岩样为穿切节理面破坏,当夹角>40°时,岩样为沿节理面破坏.对加、卸荷试验而言,2类破坏看不出与夹角的关系.加、卸荷试验沿节理面破坏试样的峰值强度、残余强度都明显低于穿切节理面破坏试样的峰值强度和残余强度.加、卸荷破坏试验中,沿节理面破坏试样没有明显的屈服阶段,峰值强度后强度迅速降低,没有出现三轴压缩破坏中的屈服和强度提高过程.  相似文献   

9.
基于2种卸荷应力路径和常规三轴压缩试验,研究了加卸载条件下花岗岩的变形破坏及应力脆性跌落特征.卸荷条件下岩石变形主要是向卸荷(主)方向回弹或拉伸变形为主,而非或次卸荷方向的塑性变形很小,峰后应力应变曲线呈现明显的脆性特征.而加载条件下岩石以轴向压缩变形为主,且压缩塑性变形随围压增大而增大;卸荷条件下破坏岩石各种级别的张...  相似文献   

10.
为探讨深埋软岩在不同应力路径下力学性质的差异,对取自丹巴水电站右岸平硐深埋软岩分别进行室内三轴加载试验和不同围压等级、不同卸荷应力水平、不同卸荷速率的恒轴压卸围压试验,并对岩样卸荷破坏面进行微观形貌扫描,分别探讨不同条件下岩样的变形、强度及破坏特征,结果发现:(1)相比三轴加载试验,同等级围压的软岩在卸荷条件下的强度、峰值应变及力学参数都有减小,应力–应变曲线从延性向脆性转换;(2)软岩峰值轴向应变、极限强度、残余强度与卸荷应力水平、卸荷速率均呈正相关性;(3)相比Hoek-Brown经验强度准则,Mohr-Coulomb强度准则能更好地描述软岩强度特性,不同应力路径对抗剪强度参数影响有差异性,卸荷速率对c值的影响更为显著,而卸荷应力水平对?值的影响更为显著;(4)软岩加、卸载条件下都发生剪切破坏,加载时除主裂纹外基本没有衍生微裂纹,卸载时,低卸荷应力水平下岩样破坏后的次生裂纹更发育,且卸荷速率越大岩样破坏程度越强烈;低围压下卸荷破坏时,岩石断面微观形貌演化自由度较高,破坏面粗糙度大。  相似文献   

11.
为探究深部原位应力煤岩卸荷力学特性,利用MTS816岩石力学测试系统对原位应力煤岩开展不同卸荷速率的三轴加卸载试验,并与常规卸荷试验对比,通过获取全过程应力–应变曲线分析卸荷煤岩的力学性能与变形特征,结合CT三维重构技术研究煤岩的破坏特征,探讨原位应力卸荷煤岩的适用强度准则。结果表明:(1) 2种方案煤岩的峰值强度与卸荷速率均成反比,但原位应力煤岩较常规煤岩的峰值强度更高,这种趋势在低速卸荷时逐渐弱化。(2)原位应力恢复过程实施后,煤岩在卸荷速率升高条件下,峰值轴向应变先减小后趋于稳定,峰值侧向应变整体不变,峰值体积应变先降低后增加。卸荷条件下原位应力煤岩的弹性模量更平稳,应变硬化模量得以增强。(3) Mogi-Coulomb强度准则能更好地反映原位卸荷煤岩的破坏强度特征;原位应力煤岩较常规煤岩的黏聚力c增加39.23%,内摩擦角φ减少11.92%,表明原位卸荷煤岩的抗破坏主控因素为黏聚力。  相似文献   

12.
为了揭示深部软弱地层开挖卸荷后围岩流变力学特性,开展砂质泥岩恒轴压逐级卸围压三轴卸荷蠕变试验,研究软岩轴向、侧向和体积蠕变规律和卸荷流变过程中偏应力–应变关系特性。主要结论有:(1)每卸除一级应力(10 MPa)产生的瞬时变形、蠕变变形、蠕变变形相对该级荷载下的瞬时变形的比值、蠕变变形占总变形量百分比均随偏应力的增加而增大,围压越低蠕变变形增加的幅度越大;(2)随着围压逐级卸荷,岩石内部产生竖向张性微裂纹,微裂纹的萌生和扩展使得卸围压瞬时产生较明显的侧向变形,且蠕变过程中微裂纹将发生与应力水平相应的时效扩展,产生黏塑性变形;(3)岩石在时效条件下的渐进破坏的本质是损伤随时间的逐渐累积,并伴随着裂纹的时效扩展,统称为时效损伤破裂;(4)随着围压逐级卸荷,偏应力增大,历史上经历的卸荷级数多、蠕变时间长,试样内部积累的不可恢复应变和损伤越多,时效损伤破裂越剧烈,在该级荷载条件下轴压低的试样其流变速率越大,蠕变变形量越大,卸荷效应和流变特征更加明显,同时伴随显著的侧向扩容,导致蠕变扩容;(5)卸荷和蠕变所产生的损伤和塑性变形对后续力学行为影响非常显著。  相似文献   

13.
利用WDT-1500大型多功能材料试验机对裂隙试样进行定围升轴、卸围升轴和定轴卸围3种应力路径条件下的试验,研究裂隙试样的变形特征、强度特征和破坏机制。试验结果表明:裂隙试样在不同应力路径下的力学参数变化明显:卸围升轴和定轴卸围下试样强度均低于定围升轴下的强度。不同应力路径条件下,试样峰值强度均随着裂隙倾角的增大而先降低后增大,裂隙倾角为30°或45°时最小。试样的力学特性主要受裂隙角度、应力路径、初始围压等的控制,裂隙倾角对峰值强度的影响最大,围压卸荷速率次之,初始围压最小。定围升轴下试样破坏形态多为剪切破坏,而卸围升轴和定轴卸围下试样多为张-剪混合破坏,卸围升轴下试样的张裂纹发育较少,定轴卸围下张裂隙发育显著。  相似文献   

14.
对大理岩试样进行恒轴压条件下峰前、峰后卸围压破坏试验,研究岩石的变形破坏特征及破坏过程能量演化规律,得到以下结论:恒轴压条件下环向变形随卸荷速率增大而减小,而轴向变形变化很小,轴向变形没有明显的速率变化效应;峰前、峰后卸荷都为典型的剪切破坏,而峰后卸荷有明显的共轭剪切带;卸荷破坏过程能量转化大致分为能量积聚、能量耗散和能量释放3个阶段;卸荷速率越快,弹性应变能释放得越快、越剧烈;耗散能变化率随卸荷速率的增加也变大;耗散能变化率比弹性应变能变化率大一个数量级,能量快速耗散是大理岩卸荷破坏过程的主要特征。  相似文献   

15.
针对黄土工程中的众多平面应变加、卸载问题,利用平面应变改造后的西安理工大学真三轴仪,模拟黄土原位沉积方向及不同初始应力状态,在不同围压下对不同初始应力状态原状黄土进行竖向加载和侧向卸载平面应变试验,揭示不同初始应力状态原状黄土在加、卸载不同应力路径条件下的强度和变形特性。研究结果表明:两种应力路径条件下的应力应变曲线均呈硬化型,加载曲线均高于卸载,加载强度大于卸载强度,但卸载时,土的强度发挥较快。剪切过程中,黄土的侧向变形与竖向变形均呈非线性关系。竖向加载时,土的初始应力状态k值对土强度和变形的影响与固结围压的大小关系紧密;侧向卸载时,k值的增大可以限制侧向变形的发展。竖向加载条件下的体积应变均为剪缩,侧向卸载时均为剪胀。加、卸载条件下p-q平面内的破坏强度线基本一致,近似呈线性关系。侧向卸载条件下土体破坏时的应变远小于竖向加载和常规三轴试验。随着k值的增大,加、卸载应力路径时,黏聚力均线性减小,内摩擦角均线性增大。  相似文献   

16.
地下工程中高地应力赋存环境下的脆硬性岩体在开挖卸荷过程中极易发生时滞型岩爆。通过开展不同卸荷应力路径下考虑围压卸荷速率及卸荷量影响的砂岩三轴时滞变形破坏试验及细观检测分析,探讨不同影响因素作用下的的砂岩时滞变形破坏特征。研究结果表明:不同卸荷应力路径下,时滞变形段总时间均随围压卸荷速率v3先增大后减小,而随围压卸荷比Vσ则呈现持续减小的趋势,但升轴压卸围压条件下时滞变形段总时间显著大于恒轴压卸围压,结合试样宏观破坏特征可知,升轴压卸围压应力路径下试样时滞变形破坏程度更高。此外,利用SEM+EDS进行断面特征定量分析表明,不同影响因素作用下的断面矿物颗粒特征与时滞变形段总时间密切相关;最后,结合重整化群理论,建立基于logistics函数的分阶段损伤本构模型,并计算验证模型的合理性。研究结果对于时滞型岩爆的孕育机制研究具有一定的指导意义。  相似文献   

17.
通过对经历400℃~1 000℃高温后的粗砂岩进行常规三轴压缩试验,分析试样变形、强度和破坏特征与温度、围压的关系。结果表明:经历400℃高温后的试样围压高于20 MPa时,试样峰值强度附近出现明显屈服平台,经历超过600℃以上高温的试样均具有明显峰值点,随温度升高试样的塑性减弱脆性增强;400℃以内高温对试样的变形参数影响不大,经历超过400℃以上高温的试样的弹性模量、变形模量和极限应变随围压增加单调增加呈正相关性;试样的弹性模量和变形模量随温度升高单调降低,而峰值应变随温度升高单调增加。高温后试样峰值强度随围压增大而单调增加,符合Coulomb强度准则,综合围压影响系数为6.541;800℃以内高温对试样黏聚力、内摩擦角影响不明显,经历1 000℃高温后的试样黏聚力急剧降低,内摩擦角稍有增加;800℃以内高温对粗砂岩具有强化作用,扣除围压影响后试样材料强度与温度呈正相关,超过800℃以上高温使试样强度有所弱化,试样材料强度与温度呈负相关性;高温后试样的试验破坏角和理论破坏角基本一致,高温对试样破坏角影响较小,试验破坏角随围压增加而单调减小,围压对试样破坏角的影响大于温度的影响。  相似文献   

18.
为深入研究花岗岩在卸荷路径作用下各变形阶段的应力特征值、变形参数和破裂前兆信息,选取甘肃北山花岗岩为研究对象,在不同初始围压下进行三轴卸荷试验。试验结果表明:(1) 随初始围压的增大,岩石特征应力值逐渐增大,受力模式由横向张拉作用转为张剪联合作用;(2) 弹性模量受初始围压大小的影响不大,泊松比随围压卸载而增大,弹性模量随围压的卸载而降低,均不是连续介质意义上的变形特征参数;(3) 在路径1作用下,因岩石侧向扩容剧烈,从而粘聚力较小;而路径2作用下岩石受张性破裂影响,导致破裂面粗糙,因此内摩擦角较高;(4)能量累计数随时间由缓慢增长转为加速增长的时间转折点可作为岩石在卸荷作用下出现宏观裂隙、导致完全破坏的监测参量。  相似文献   

19.
 岩石在周期荷载作用下的力学性能是影响岩体工程长期稳定性的重要因素之一,需研究循环荷载作用下岩石的特性及演化规律。首先采用声波纵、横波波速测量方法,对岩样进行筛选。设计灰岩在施加不同围压和恒定循环上限应力作用下,三轴变围压循环加卸载下岩石变形特征测试方案。三轴变围压循环试验在GCTS–1000型岩石力学测试系统上进行,通过对试验结果的分析表明:(1) 灰岩在变、恒围压加、卸载循环中,形成一封闭的塑性滞回环。在轴向变形上滞回环面积逐次缩小;而变围压循环在径向变形上滞回环面积逐次增大,而恒围压循环在径向变形上滞回环面积几乎相等。(2) 在三轴变围压循环压缩试验中,围压增加和循环上限应力不变,残余变形量随着循环次数的增加而呈现出一个递减的趋势,轴向应变和径向应变的发展趋势是相反的。(3) 在整个循环加卸载过程中,各个加卸载阶段变形模量值不同,卸载阶段变形模量高于加载阶段变形模量。(4) 变围压循环加、卸载阶段变形模量的值大于恒围压循环加、卸载阶段下变形模量的值。通过试验,揭示灰岩在三轴变围压循环下,加载和卸载2种力学状态时变形特性的差异。同时分析变围压循环和恒围压循环状态下岩石弹性参数的差异性。  相似文献   

20.
脆性岩石卸围压试验与岩爆机理研究   总被引:4,自引:0,他引:4  
岩爆是高地应力区地下工程开挖卸荷产生的动力现象。按照地下工程开挖卸荷特点,开展了脆性花岗岩常规三轴、不同卸载速率条件下峰前、峰后三轴卸围压试验,研究了岩石破坏的全过程并进行了声发射特征分析,探讨了岩爆岩石的变形破坏特征和岩爆形成力学机制。试验结果表明:无论是峰前还是峰后卸围压,高地应力下花岗岩都表现脆性破坏特征,峰前卸围压时岩样表现出的脆性比峰后卸围压更为强烈;卸载速率越快,岩石脆性破坏越强,发生岩爆的可能性越大。试验研究成果对地下工程岩爆发生的机理研究和预测提供了试验依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号