首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
《Ceramics International》2020,46(17):27352-27361
Lightweight, broadband microwave absorbing materials, with strong absorption capacities, are an urgent demand for practical applications. The microstructural and microwave absorption properties of LaFeO3 samples prepared by a sol-gel method using different amounts of Sr are investigated systematically. X-ray diffraction and Rietveld refinement studies showed that Sr2+ doping can distort the crystal structure of LaFeO3, leading to lattice expansion and spin tilt of the Fe-O-Fe bond angle. The improvement of magnetic properties mainly originates from the synergistic effect of the bond angle spin tilt and crystal structure defects. Oxygen vacancies will be generated due to the fluctuations in the valence state of Fe3+ resulting from the substitution of La3+ by Sr2+ as deduced from the X-ray photoelectron spectroscopy analysis. The generation of oxygen vacancies, electronic hopping and polarization loss may be one of the main reasons for changes in the electromagnetic parameters. The minimum reflection loss (RL) of La1–xSrxFeO3 nanoparticles with the Sr doping of 0.2 can reach approximately -39.3 dB at 10 GHz for the thickness of 2.2 mm, and the effective absorption bandwidth (RL ≤ -10 dB) can reach approximately 2.56 GHz. In addition, the La1–xSrxFeO3 nanoparticles also can obtain better microwave absorbing performance in the C-band (4–8 GHz) with the minimum RL of -36.8 dB for the matching thickness of 3.0 mm and Sr content of 0.3. Consequently, La1–xSrxFeO3 nanoparticles are promising materials for use in a high-performance and adjustable electromagnetic wave absorber, particularly in C-band and X-band.  相似文献   

2.
Magnetic properties of La1-xSrxFeO3 (x = 0, 0.1, 0.2, 0.3, 0.4 and 0.5) have been investigated in a wide magnetic field range from 0 to 35 T using pulsed high magnetic field magnetization and electron spin resonance measurements. Experimental results show that both the non-magnetic Sr2+ dopant and high magnetic fields affect the stability of the robust antiferromagnetic coupling between Fe ions and induce new phase transitions. Especially the phase transition temperatures and hysteresis behavior show a high sensitivity on the Sr dopant and its doping level. On the other hand, a nonlinear Sr doping level dependence of the transition temperatures and hysteresis behavior were observed, indicating that the charge disproportionation is not the sole influence. Thus, in the series Sr doping La1-xSrxFeO3 samples, the dopant induced FeO6 octahedron distortion and charge disproportionation are coexistence and competition, which leads to a complicated and Sr doping level nonlinearly dependent magnetization behavior.  相似文献   

3.
Oxygen carriers (OCs) with typical perovskite structures have attracted attention for use in chemical looping combustion (CLC) owing to their unique tunable structures and excellent performance. Thus, a further improvement in the reactivity and a deep understanding of the kinetic behaviour in CLC are highly desirable for such perovskite OCs. In this study, a series of Sr-doped perovskite-structured CaFeO3 OCs (denoted as SrxCa1−xFeO3) were synthesized. The CLC characteristics, kinetic behaviour, and doping mechanism were systematically investigated via experiments and density functional theory (DFT) calculations. The activation energies of SrxCa1−xFeO3 OCs with various Sr contents were found to be in the range of 36.6–40.1 kJ/mol and lower than that of CaFeO3 (62.7 kJ/mol), indicating that the Sr doping enhanced the reactivity of CaFeO3. Among the OCs, Sr0.4Ca0.6FeO3, which had the lowest activation energy and the fastest release of lattice oxygen, was regarded as the optimum OC. DFT calculations indicated that the reaction energy barrier of SrxCa1−xFeO3 (0.73–1.06 eV) was lower than that of CaFeO3 (2.18 eV). This suggests that Sr doping and the regulation of the reaction pathways are essential drivers for enhancing the reactivity of SrxCa1−xFeO3, which affects the release of lattice oxygen and the morphological properties of OC particles.  相似文献   

4.
《Ceramics International》2023,49(2):1947-1959
Strontium and Yttrium-doped and co-doped BaTiO3 (BT) ceramics with the stoichiometric formulas BaTiO3, B1-xSrxTiO3, Ba1-xYxTiO3, BaTi1-xYxO3, Ba1-xYxTi1-xYxO3, and Ba1-xSrxTi1-xYxO3 (x = 0.075) noted as BT, BSrT, BYT, BTY, BYTY, and BSrTY have been synthesized through sol-gel method. X-ray diffraction (XRD) patterns of the prepared ceramics, calcined at a slightly low temperature (950 °C/3h), displayed that BT, BSrT, and BYT ceramics possess tetragonal structures and BTY, BYTY, and BSrTY have a cubic structure. The incorporation of the Ba and/or Ti sites by Sr2+ and Y3+ ions in the lattice of BaTiO3 ceramic and the behaviors of the crystalline characteristics in terms of the Y and Sr dopant were described in detail. The scanning electron microscopy (SEM) images demonstrated that the densification and grain size were strongly related to Sr and Y elements. UV–visible spectroscopy was used to study the optical behavior of the as-prepared ceramic samples and revealed that Sr and Y dopants reduce the optical band gap energy to 2.74 eV for the BSrTY compound. The outcomes also demonstrated that the levels of Urbach energy are indicative of the created disorder following the inclusion of Yttrium. The measurements of the thermal conductivity indicated the influence of the doping mechanism on the thermal conductivity results of the synthesized samples. Indeed, the thermal conductivity of BaTiO3 is decreased with Sr and Y dopants and found to be in the range of 085–2.23 W.m-1. K?1 at room temperature and decreases slightly with increasing temperature from 2.02 to 0.73-W.m-1. K?1. Moreover, the microstructure and grains distribution of the BT, BSrT, BYT, BTY, BYTY, and BSrTY samples impacted the compressive strength, hence; the compressive strength was minimized as the grain size decreased.  相似文献   

5.
《Ceramics International》2020,46(8):11950-11954
In this study, La0.8-xYxSr0.2MnO3 (LYSMO) polycrystalline ceramics were prepared by means of sol-gel technique using methanol as solvent. X-ray diffraction (XRD) showed all samples to possess standard perovskite structure. Scanning electron microscopy (SEM) revealed samples with high compactness and grain size from 27.80 to 29.73 μm. Resistivity–temperature tests indicated sharp metal-insulator transition behavior of all samples accompanied by rapid transformation from ferromagnetism to paramagnetism (FM-PM). As Y3+ doping amounts rose, radius of A-site ions decreased, metal-insulator transition temperature (Tp) of polycrystalline samples shifted to lower temperatures, and resistivity increased. Temperature coefficient of resistance (TCR) and magnetoresistance (MR) were affected by introduction of Y3+. At x = 0.06, peak TCR and peak MR reached 4.85% K−1 and 52.34%, respectively. Using double exchange (DE) interaction mechanism, electric transport performances of as-prepared ceramics were explained. These findings look promising for future applications of LYSMO materials in magnetic devices and infrared detectors.  相似文献   

6.
The structure stabilities of double perovskite ceramics‐ (1 ? x) Ba(Mg1/2W1/2)O3 + xBa(Y2/3W1/3)O3 (0.01 ≤ x ≤ 0.4) have been studied by X‐ray powder diffraction (XRD), scanning electron microscopy (SEM), and Raman spectrometry in this study. The microwave dielectric properties of the ceramics were studied with a network analyzer at the frequency of about 8–11 GHz. The results showed that all the compounds exhibited face‐centered cubic perovskite structure. Part of Y3+ and W6+ cations occupied 4a‐site and the remaining Y3+ and Mg2+ distributed over 4b‐site, respectively, and kept the B‐site ratio 1:1 ordered. Local ordering of Y3+/Mg2+ on 4b‐site and Y3+/W6+ cations on 4a‐site within the short‐range scale could be observed with increasing Y‐doping content. The decomposition of the double perovskite compound at high temperature was successfully suppressed by doping with Y on B‐site. However, Ba2Y0.667WO6 impurity phase appeared when x > 0.1. The optimized dielectric permittivity increased with the increase in Y doping. The optimized Q × f value was remarkably improved with small amount of Y doping (x ≤ 0.02) and reached a maximum value of about 160 000 GHz at x = 0.02 composition. Further increasing in Y doping led to the decrease in Q × f value. All compositions exhibited negative τf values. The absolute value of τf decreased with increasing Y‐doping content. Excellent combined microwave dielectric properties with εr = 20, Q × = 160 000 GHz, and τf = ?21 ppm/°C could be obtained for x = 0.02 composition.  相似文献   

7.
《Ceramics International》2015,41(7):8417-8424
Raman spectroscopy, X-ray diffraction (XRD), magnetization hysteresis loop, synchrotron X-ray absorption spectroscopy, and photovoltaic effects have been measured in (Bi1−xSrx)FeO3−δ (BFO100xSr) ceramics for x=0.0, 0.05, 0.10, and 0.15. Raman spectra and XRD reveal a rhombohedral R3c structure in all compounds. A-site Sr2+ doping increases fluctuations in cation-site occupancy and causes broadening in Raman modes. BFO15Sr exhibits a strong ferromagnetic feature due to reduction of FeOFe bond angle evidenced by the extended synchrotron X-ray absorption fine structure. The heterostructure of indium tin oxide (ITO) film/(Bi1−xSrx)FeO3−δ ceramic/Au film exhibit clear photovoltaic (PV) responses under blue illumination of λ=405 nm. The maximal power-conversion efficiency and external quantum efficiency in ITO/BFO5Sr/Au are about 0.004% and 0.2%, respectively. A model based on optically excited charges in the depletion region between ITO and (Bi1−xSrx)FeO3−δ can well describe open-circuit voltage and short-circuit current as a function of illumination intensity.  相似文献   

8.
In this work, the physical properties of nanocrystalline samples of La0.7Sr0.3Mn1−xFexO3 (0.0 ≤ x ≤ 0.20) perovskite manganites synthesized by the reverse micelle (RM) technique were explored in detail. The phase purity, crystal structure, and crystallite size of the samples were determined using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. All the samples had rhombohedral crystal structure and crystallite size increased with increase in Fe content in La0.7Sr0.3MnO3. The scanning electron micrographs (SEMs) exhibited smooth surface morphology and nonuniform shape of the particles. The optical properties studied using UV-visible absorption spectroscopy revealed a decrease in the absorbance and optical band gap with an increase in Fe content in La0.7Sr0.3MnO3 compound. The temperature-dependent resistivity measurements revealed semiconducting nature of x = 0 and 0.1 samples up to the studied temperature range, while a metal-to-insulator transition was observed at higher Fe doping. Magnetic studies revealed weak ferromagnetism in all the samples and a reduction in the maximum magnetization with an increase in Fe content. A close correlation between electrical transport and magnetic properties was observed with the doping of Fe ion in La0.7Sr0.3MnO3 at Mn site. These results advocate strong interactions associated with the double exchange mechanism among Fe3+ and Mn3+ ions.  相似文献   

9.
Multiferroic Bi1?xLaxFeO3 [BLFO (x)] ceramics with x = 0.10–0.50 and Mn‐doped BLFO (x = 0.30) ceramics with different doping contents (0.1–1.0 mol%) were prepared by solid‐state reaction method. They were crystallized in a perovskite phase with rhombohedral symmetry. In the BLFO (x) system, a composition (x)‐driven structural transformation (R3cC222) was observed at x = 0.30. The formation of Bi2Fe4O9 impure phase was effectively suppressed with increasing the x value, and the rhombohedral distortion in the BLFO ceramics was decreased, leading to some Raman active modes disappeared. A significant red frequency shift (~13 cm?1) of the Raman mode of 232 cm?1 in the BLFO ceramics was observed, which strongly perceived a significant destabilization in the octahedral oxygen chains, and in turn affected the local FeO6 octahedral environment. In the Mn‐doped BLFO (x = 0.30) ceramics, the intensity of the Raman mode near 628 cm?1 was increased with increasing the Mn‐doping content, which was resulted from an enhanced local Jahn–Teller distortions of the (Mn,Fe)O6 octahedra. Electron microscopy images revealed some changes in the ceramic grain sizes and their morphologies in the Mn‐doped samples at different contents. Wedge‐shaped 71° ferroelectric domains with domain walls lying on the {110} planes were observed in the BLFO (x = 0.30) ceramics, whereas in the 1.0 mol% Mn‐doped BLFO (x = 0.30) samples, 71° ferroelectric domains exhibited a parallel band‐shaped morphology with average domain width of 95 nm. Dielectric studies revealed that high dielectric loss of the BLFO (x = 0.30) ceramics was drastically reduced from 0.8 to 0.01 (measured @ 104 Hz) via 1.0 mol% Mn‐doping. The underlying mechanisms can be understood by a charge disproportion between the Mn4+ and Fe2+ in the Mn‐doped samples, where a reaction of Mn4+ + Fe2+→Mn3+ + Fe3+ is taken place, resulting in the reduction in the oxygen vacancies and a suppression of the electron hopping from Fe3+ to Fe2+ ions effectively.  相似文献   

10.
A novel ultrasonic irradiation assisted self-combustion method was developed to prepare single-phase Bi1−xSrxFeO3−δ (BSFO) nanoparticles, which were charactered by XRD, SEM, TEM and UV–vis spectra. The results show that structure, as well as magnetic and photocatalytic properties of BSFO are influenced by the particle size and the Sr2+ dopant content. Regarding smaller particles, even if small amount of Sr2+ substitution content change can result in the phase transition from the rhombohedral distorted perovskite to the cubic. The doping of heterovalent Sr2+ ions in BiFeO3 (BFO) nanoparticles improves the ferromagnetic property. As ultrasonication can generate particles with larger surface area and more defections, BSFO nanoparticles exhibit efficient photocatalytic activity as a promising photocatalyst.  相似文献   

11.
《Ceramics International》2023,49(16):26675-26682
Phase formation, microstructure, magnetic properties, and dielectric properties of Ba1.5Sr1.5Co2Fe(23x)CrxO41 (0.0 ≤ x ≤ 1.0) ceramics, in which Fe3+ ions were substituted by Cr3+ ions, were systematically investigated. X-ray diffraction results reveal that Z-type hexagonal ferrite was formed by sintering at 1250 °C, and Cr3+ ions successfully enter lattice without destroying crystal structure. Analysis of the microstructure reveals that Cr3+ ion doping has significant effect on crystal micromorphology. Samples with x = 0.4 have the most homogeneous micromorphology and the highest sintering density of 5.12 g/cm3. In addition, under the influence of external magnetic field, all samples exhibit typical soft magnetic character and hysteresis characteristics, with saturation magnetization up to 63.86 emu/g (x = 0.6). Particularly, compared with undoped sample, Cr-doped samples have outstanding magnetic–dielectric properties. Firstly, with increasing Cr3+ amount, real part of the permeability (μ′) reaches the maximum value of 10.70 at x = 0.4, while cutoff frequency exceeds 2 GHz, and Snoek constant reaches ∼19.50 GHz. Furthermore, due to more homogeneous microstructure, samples with x = 0.4 have low magnetic loss and can maintain high quality factor (Q) over a broad frequency range. Moreover, real part of the permittivity (ε′) reaches the maximum value of 16.90 at x = 0.6, and dielectric loss remains lower than 0.013 for frequencies below 0.7 GHz. Consequently, magnetic–dielectric materials prepared in this work are expected to have extensive application prospects for ultrahigh-frequency devices.  相似文献   

12.
Enhanced microwave absorption properties were successfully achievable from SrFe2-xZnxFe16O27 (SrFe2-xZnxW; x = 0.0, 0.5, 1.0, and 2.0) hexaferrite filler-epoxy resin matrix composites. The composite samples were fabricated with the filler volume fractions (Vf) of 30, 50, 70, and 90%. Compared with fully Zn-substituted SrZn2W composite (x = 2.0), unsubstituted and partially Zn-substituted SrFe2-xZnxW (x = 0.0, 0.5, and 1.0) composites exhibited much higher real and imaginary parts of complex permittivity (εr), which is attributable to higher electron hopping between Fe2+ and Fe3+ ions, and also slightly higher real and imaginary parts of complex permeability (μr) due to higher saturation magnetization (Ms). Among all samples, a 2.8 mm-thick SrFe1·5Zn0·5W (x = 0.5) composite with the Vf of 90% exhibited the most appropriate for application in the region of 3.4–3.8 GHz, having the minimum reflection loss (RLmin) of ?46 dB at 3.6 GHz with the bandwidth of 0.43 GHz (3.38–3.81 GHz) below ?10 dB, while a 2.15 mm-thick SrFeZnW (x = 1.0) composite with the Vf of 70% showed the most appropriate for application in the region of 5.9–7.1 GHz, possessing the RLmin value of ?23.7 dB at 6.6 GHz with the bandwidth of 1.38 GHz (5.85–7.23 GHz) below ?10 dB. Consequently, partially Zn-substituted SrW-type hexaferrites are very promising microwave absorbers for 5G mobile communications in the Ku band (0.5–18 GHz).  相似文献   

13.
《Ceramics International》2016,42(9):10808-10812
The structural, magnetic, and dielectric properties of the Y1−xHoxFe0.5Cr0.5O3 (x=0, 0.05, 0.1, 0.3, and 0.5) compounds have been investigated. Rietveld refinement of the XRD patterns shows that the compounds possess orthorhombic perovskite structure. The dual magnetization reversal is observed in the samples with x=0.05 and 0.1, and it vanishes when x≥0.3. Ferromagnetic-like behavior with large coercive fields is observed in all Ho3+ doped YFe0.5Cr0.5O3 samples, indicating a doping induced metamagnetic behavior. This abnormal magnetization behavior can be explained by the antiparallel magnetic coupling between the Ho3+ and the canted Cr3+/Fe3+ moments, as well as the Ho–O–Ho magnetic interaction. The dielectric behavior in the frequency range from 100 Hz to 10 MHz is investigated. The low doped samples (x=0, 0.05, and 0.1) exhibit relaxation-like dielectric behavior and colossal dielectric constant in a wide temperature and frequency range. The dual magnetization reversal under low magnetic field makes these materials attractive candidates for the magnetic dual sensor devices.  相似文献   

14.
《Ceramics International》2023,49(4):6307-6313
A mixed perovskite titanate-aluminate [(1-x)(Sr0.6La0.2Ce0.2Ti0.8Mg0.2O3)-xNdAlO3 for x = 0.1 to 0.4] solid solution was successfully synthesized. X-ray diffraction patterns (XRD) and Rietveld refinement results indicated a stable perovskite phase with a cubic structure, in which Nd3+ occupies the A-site randomly while Al3+ occupies the B-site. No additional reflection spots (superlattice reflections) were detected in the HRTEM pattern (see SAED), confirming the cubic symmetry. All samples showed small Urbach tails, mainly due to compositional disorder. Microstructural analysis based on atomic force microscopy (AFM) showed no traces of impurity phases. For x = 0.4, excellent microwave dielectric properties (MWD) are obtained with a quality factor (Q × f) of 37,131 GHz at f = 5.2801 GHz, relative permittivity (εr) of 43, and temperature coefficient of resonant frequency (τf) of +1.3 ppm/°C. Variations in εr, Q × f values, and τf may be related to changes in relative density (ρrel), ion polarizability, optical band gap, and tolerance factor, respectively.  相似文献   

15.
《Ceramics International》2020,46(9):13102-13106
The Ba1-xCaxFe11.4Co0.6O19 (x = 0.0, 0.2, 0.4, 0.6, and 0.8) composites with wide-bandwidth and good absorption performance were prepared. The MS of ceramics increases from about 62.4 to 83.4 emu g−1 as x rises from 0 to 0.6, which demonstrates that the desirable magnetic properties of such ceramics is obtained by adjusting the content of Ca2+. A bandwidth of reflection loss (RL) below - 5 dB can be obtained for frequencies from 5.9 to 18 GHz with the Ba0.4Ca0.6Fe11.4Co0.6O19 ceramic and a thickness of 2.0 mm, and a larger RL value of −34.1 dB is observed at 8.2 GHz for the Ba0.6Ca0.4Fe11.4Co0.6O19 ceramic. These results suggest the developed ceramics could act as effective and wide-bandwidth microwave absorbing materials to meet commercial and military applications.  相似文献   

16.
《Ceramics International》2023,49(5):7396-7403
Ruddlesden?Popper (RP)-type perovskite materials Srn+1TinO3n+1 (n = 1, 2, 3, and ∞) have important application prospects in photocatalysis. However, their wide band gap limits their visible light absorption ability. Doping is an efficient method that can be used to reduce the band gap and improve its light absorption range. In this work, irradiation doping with the advantages of compulsivity and controllability, rather than a chemical doping method, is used to manipulate the band gaps of Srn+1TinO3n+1 to understand the respective contributions of the substitution of the Sr and Ti sites to the band gap reduction as a function of the n value. The solid-state reaction-prepared RP-type perovskites Srn+1TinO3n+1 (n = 1, 2, 3, and ∞) irradiated by a 270 keV Fe ion beam with 0–1 × 1016 ions/cm2 doses were characterized by SEM, XRD and UV–vis diffuse reflectance spectra. Tauc plot analysis showed that the band gaps of Srn+1TinO3n+1 decreased with an increase in Fe doping dose, which was confirmed by DFT calculations. Meanwhile, the effects of the perovskite and rock-salt layers of the RP-type perovskite on the band gap modification were demonstrated, showing that the band gap of Srn+1TinO3n+1 with smaller n values decreases less when the Fe irradiation dose increases. This is explained by more salt SrO layers found in Srn+1TinO3n+1 for smaller n values, which prevents the substitution of Sr and Ti atoms in perovskite layers, significantly influencing the band gap.  相似文献   

17.
High-density La0.9-xSrxK0.1MnO3 ceramics (LSKMO, A-site = La, Sr and K, 0 ≤ x ≤ 0.25) are successfully fabricated by using facile sol-gel method. Electrical properties are performed by using combination of phenomenological percolation (PP) model, double exchange (DE) mechanism, and Jahn-Teller (JT) effect. Moreover, X-ray diffraction and scanning electron microscopy are employed to analyze the structure and morphology of LSKMO ceramics. Valence states and ionic stoichiometry are assessed by using X-ray photoemission spectrometry. Results reveal that Sr2+ ions, substituting La3+ ions, significantly influenced DE mechanism and JT effect. In addition, Sr-doping plays essential role in improving electrical properties of LSKMO ceramics. At optimal doping content of x = 0.09, peak temperature coefficient of resistance (TCR) of the resistivity is found to be 11.56% K?1 at 297.15 K, which is optimal TCR for A-site K-occupied perovskite manganese oxides. These results confirm that polycrystalline LSKMO ceramics render high room-temperature TCR values due to Sr-doping.  相似文献   

18.
《Ceramics International》2016,42(3):4176-4184
The effect of the La3+ and Gd3+ co-doping on the structure, electric and magnetic properties of BiFeO3 (BFO) ceramics are investigated. For the compositions (x=0 and 0≤y≤0.15) in the perovskite structured LaxGdyBi1−(x+y)FeO3 system, a tiny residual phase of Bi2Fe4O9 is noticed. Such a secondary phase is suppressed with the incorporation of ‘La’ content (x). The magnitude of dielectric constant (εr) increases progressively by increasing the ‘La’ content from x=0 to 0.15 with a remarkable decrease of dielectric loss. For x=0.15, the system LaxGdyBi1−(x+y)FeO3 exhibits highest remanent magnetization (Mr) of 0.18 emu/g and coercive magnetic field (HC) of ~1 T in the presence of external magnetic field of 9 T at 300 K. The origin of enhanced dielectric and magnetic properties of LaxGdyBi1−(x+y)FeO3 and the role of doping elements, La3+, Gd3+ has been discussed.  相似文献   

19.
Thermogravimetric analysis was applied to the study of oxygen nonstoichiometry of perovskite oxides of the compositions Pr0.8Sr0.2Co0.2Mn0.8O3−δ and Pr1−xSrxCo0.2Fe0.8O3−δ (x = 0.2, 0.4). The measurements were performed in the temperature range from room temperature to 1200 °C in various atmospheres: oxygen, air and argon. The recorded weight loss corresponds to the loss of lattice oxygen. The magnitude of oxygen loss increased and the temperature at which oxygen loss became significant decreased with increasing Sr content. The loss of lattice oxygen became more significant as the oxygen partial pressure decreased. For the same pO2 and level of Sr doping, the Fe-containing composition became more easily oxygen deficient than the corresponding Mn-containing one, suggesting that Fe is more resistant to oxidation from the trivalent to the tetravalent state than Mn. Electrical conductivity measurements, performed in air, showed that the temperature ranges at which conductivity decrease was observed, correspond fairly well with those ranges where weight loss was detected.  相似文献   

20.
The intermediate temperature electrolytes La1?xSrxGa1?yMgyO3?δ (LSGM, where δ = (x + y)/2) with perovskite structure were prepared using a poly(vinyl alcohol) (PVA) solution polymerization method. Three secondary phases were identified by X-ray diffraction, LaSrGaO4, LaSrGa3O7 and La4Ga2O9. The relative amount of these secondary phases depended on the doping compositions. Sr doping produced more Sr rich secondary phases with increasing content, while enhanced solid solubility was observed with Mg addition. Sintered samples showed dense microstructures with well-developed equiaxed grains, and the secondary phases were mainly in the grain boundaries. LaSrGaO4 could not be detected by SEM for the sintered pellets. The oxygen ionic conductivity was enhanced by doping with Sr and Mg. Mg doping showed the increased conductivity activation energy. La0.8Sr0.2Ga0.9Mg0.1O2.85 had the highest ionic conductivity σ = 0.128 S/cm at 800 °C in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号