首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
微波加热在钛冶金中的应用   总被引:3,自引:0,他引:3  
在简要介绍微波加热机制的基础上,对微波加热技术用于钛冶金过程中的研究、实验结果进行了总结,结果表明:微波加热技术在钛铁矿的预处理、选矿、碳热还原、钛的液相提取等领域具有广阔的应用前景.通过分析微波加热技术应用于钛铁矿处理过程中存在问题,认为深入开展微波与矿物相互作用基础理论的研究、大功率工业微波加热设备的研制,将推动微波加热技术应用于工业化生产.  相似文献   

2.
微波加热在冶金碳热还原中的应用研究现状   总被引:3,自引:0,他引:3  
宋耀欣  储少军 《铁合金》2006,37(6):8-12
介绍了微波加热的基本原理以及矿物在微波场中的升温特性,重点介绍了微波加热在冶金碳热还原中的应用现状,并分析了微波加热碳热还原技术应用于铁合金生产的前景。  相似文献   

3.
目前铌资源的研究大多处于常规加热阶段,因为能耗高、冷中心等问题无法广泛推广。微波加热技术是一种新型加热技术,可以有效避免冷中心等问题。借助微波马弗炉将铌精矿碳热还原反应与微波加热相结合,探究还原温度、配碳比及保温时间对铌精矿金属化率的影响,以及金属颗粒的成长行为。研究结果表明,微波加热在碳热还原反应中优于常规加热,在微波加热下,还原温度为1100℃、保温30 min、配碳比为1时,金属化率达到94.84%;1000℃时NbC开始生成,1100℃时铌钛产物主要为(Ti,Nb)C,1300℃时,钛的产物主要以TiC形式存在。  相似文献   

4.
将微波加热与FeNb2O6碳热还原特性进行结合,探究FeNb2O6在微波场中的还原反应.利用微波热重分析研究了温度、粒度和配碳量等因素对微波碳热还原FeNb2O6反应速率的影响,同时对微波场中FeNb2O6碳热还原反应进行动力学分析.研究结果表明:在微波加热的情况下,FFeNb2O6具有良好的升温特性;相较于常规加热,...  相似文献   

5.
在简要介绍微波加热原理和微波加热优点的基础上,综述了微波加热技术在铁矿石预处理、碳热还原、冶金原料的升温特性、废气处理、钢渣处理等领域的研究成果和进展。认为微波加热技术在冶金工业中具有广阔的应用前景。  相似文献   

6.
余文华 《钢铁钒钛》2011,32(3):87-96
概述了钒钛磁铁矿(及含钛矿物)的微波加热特性,微波加热技术在钒钛磁铁矿冶金中的应用现状;针对攀枝花-西昌地区丰富的钒钛磁铁矿资源未实现铁、钒、钛同时有效回收的现实,结合微波加热技术“选择性加热、内加热、强化浸出”的特点和设备规模小等问题,指出微波加热在钒钛磁铁矿冶金中应用的重点研究方向为微波加热还原钒钛磁铁精矿及钛铁矿...  相似文献   

7.
微波碳热还原法制备氮化钒的研究和实践   总被引:3,自引:4,他引:3  
李俊  罗柳娟  彭虎 《铁合金》2005,36(3):23-25
利用微波高温炉常压碳热还原渗氮法制备了氮化钒,并进行了试生产。实验结果表明微波加热法可以采用V2O5为原料一步反应制得氮化钒,配碳量和温度是影响产物成分的重要因素。试生产结果表明,产品理化指标满足炼钢的要求。与传统加热方式相比,微波加热缩短了反应时间,简化了工艺,因而大幅度地降低了成本。  相似文献   

8.
微波碳热还原攀枝花低品位钛精矿   总被引:1,自引:0,他引:1  
对攀枝花低品位钛精矿进行了微波还原试验研究。研究了预氧化、配碳量、添加剂等条件对还原钛铁矿中铁金属化率的影响。试验结果表明:在预氧化温度800℃、硼砂配比3%、焦粉配比10%、微波还原温度1000~1100℃条件下,还原60 min,还原产物铁的金属化率超过90%。分析微波强化钛铁矿还原的机理在于:微波热应力在球团内部产生大量孔隙和裂纹促进了还原气氛的扩散,快速还原产生的大量铁晶核加速了还原反应。  相似文献   

9.
碳热还原制取低铝硼铁的方法简介   总被引:1,自引:0,他引:1  
梁连科 《铁合金》1999,30(5):4-6
介绍了碳热还原制取低铝硼铁的一些生产方法,并指出了碳热还原法尚需研究解决的一些主要问题  相似文献   

10.
针对白云鄂博铌精矿利用工艺的成本高、过程复杂、能耗大的特点,引入微波场,考察温度对铌精矿还原的影响,并对其进行形貌及动力学分析。结果表明,微波场中铌精矿碳热还原反应机理属于三维扩散,动力学方程为y=1-(2/3)α-(1-α)2/3,表观活化能Ea=131.654 kJ/mol,微波加热相对于常规加热具有加快反应速率、降低反应活化能的效果。  相似文献   

11.
Effect of Temperature on Carbothermic Reduction of Ilmenite   总被引:1,自引:1,他引:0  
The reduction of ilmenite (FeTiO3) has been studied extensively. Temperature for the carbothermic reduction of ilmenite ranges from 900 ℃ to 1 400 ℃, and the reduction degree of Panzhihua ilmenite increases with increasing temperature. X ray diffraction analysis and SEM analysis were used to identify the phase before and after reduction, and to identify the morphology of reduced samples respectively. It is found that the reaction initiates at about 860 ℃. The reaction rate varies with temperature simultaneously. Impurities in Panzhihua ilmenite decrease the reduction degree. Magnesium and calcium oxide-rich zone is formed preventing complete reduction of Fe^2 . In general, the reaction products are iron, Ti3O5 and carbon.  相似文献   

12.
The carbothermic reduction is one of the mainmethods used in pyrometallurgy.It has been widelyused in both ferrous and nonferrous metallurgy.   As confirmed by experimental works,suitableamount of alkali additives can effectively catalyze thecarbothermic reduction[1] ,reduce the apparent acti-vation energy and the reaction start tempera-ture[2— 7] .It is generally believed that the catalyticeffect of alkali additives is to catalyze the Boudouardreaction and consequently accelerate the overa…  相似文献   

13.
The effect of addition of small amounts of aluminium on mechano‐chemical reduction of hematite by graphite was studied. Various amounts of aluminium (0 to 10%) were added to a hematite‐graphite mixture, in which C/O ratio was 1:1. The hematite‐graphite‐aluminium mixtures were then subjected to ball milling followed by heating up reduction. The heating up reduction was carried out in Ar atmosphere, using TG‐DTA device. In TG‐DTA experiments, samples were heated by a constant heating rate of 10 °C/min from room temperature up to 1100 °C and maintained for 30 minutes at this temperature. To clarify the reactions which took place during milling and heating up reduction, the samples were subjected to XRD examinations. It was found that the heat generated during exothermic reaction of aluminothermic reduction of hematite promoted the endothermic reaction of carbothermic reduction. In the course of heating up reduction, the carbothermic reaction occurred just after aluminothermic reaction. Increasing of aluminum content from 0 to 10% in 2 hours ball milled samples decreased the temperature of carbothermic reaction from 1020 °C to about 860 °C. The further ball milling of the samples up to 5 and 10 hours, for the samples containing 10 and 5% aluminium respectively, caused the decrease of the temperature of aluminothermic and carbothermic reactions to around the melting point of aluminium.  相似文献   

14.
Electric arc furnace is mainly used in the production of high titania slag; however, since impurities cannot be eliminated, this causes difficulty in the production of titania pigment with chlorination process. Consequently, removing impurities is the crucial way to deal with low-grade ilmenite, especially for the Panzhihua ilmenite concentrate in China. This article studied the theoretical calculation of vacuum carbothermic reduction of Panzhihua ilmenite concentrate. Thus, when the temperature was higher than 1600°C and the carbon amount was greater than 12%, all of the Fe almost entered into the gas phase. When the temperature was higher than 1300°C and the carbon amount was greater than 14%, magnesium also entered the gas phase. When the temperature was higher than 1100°C, most of the element manganese was volatilized in the gas phase. The TiO2 grade increased with the increase in carbon amount (14%). When the temperature was higher than 1600°C and the carbon amount was less than 14%, the TiO2 grade in the slag phase could reach the maximum value, which can be used for the chlorination process to prepare titanium dioxide.  相似文献   

15.
 在热力学分析的基础上,研究了碳热还原硼铁矿过程中硼的还原挥发过程,绘制出了B C O优势区图。结果表明,硼铁矿中硼的失重率随着温度的升高而增大,1 400~1 450 ℃时很快达到最大值,最大失重率为379%。B2O3主要是以B2O2的形式挥发,随炉气挥发出的B2O2在炉管上部又重新生成B2O3,和镁、硅的挥发物一起在炉管口形成白色的粉末附着在炉管壁上。由于铁的存在,另一部分硼和铁在过量碳的条件下形成了Fe B合金,以FeB、Fe2B等形式稳定存在于试样中。  相似文献   

16.
 在理论分析的基础上,对国内某钢厂不锈钢尾渣进行高温碳热还原试验研究,研究了碳当量、碱度、反应温度和保温时间对铁、铬还原率的影响。结果表明,增加碳当量、降低碱度和提高反应温度均能提高铁、铬的还原率,铁的还原率最高可以达到93.29%,铬的还原率最高为76.49%。其中碳当量较低时,铁、铬的还原率均较低,随着碳当量的增加,在铁的还原率趋于稳定后,铬的还原率会大幅上升;碱度为1.4~1.2时,铁和铬的还原趋于平缓;当保温时间超过60 min后,延长时间并不能显著地提高铁、铬的还原率。  相似文献   

17.
Thermodynamic analysis of refractory siderite ore during carbothermic reduction was conducted.Microstructure characteristics and phase transformation of siderite ore during sodium-carbonate-added catalyzing carbothermic reduction were investigated.X-ray diffraction(XRD),scanning electron microscopy and energy-dispersive analysis of X-rays were used to characterize the reduced samples.Results indicate that the solid reaction between FeO and SiO_2 is inevitable during carbothermic reduction and the formation of fayalite is the main hindrance to the rapid reduction of siderite.The phase transformation of present siderite ore can be described as:siderite-magnetite-metallic iron,complying with the formation of abundant fayalite.Improving the reduction temperature(≤1 050 ℃)and duration is helpful for the formation and aggregation of metallic iron.The iron particle size in the reduced ore was below 20μm,and fayalite was abundant in the absence of sodium carbonate.With 5% Na_2CO_3 addition,the iron particle size in the reduced ore was generally above 50 μm,and the diffraction intensity associated with metallic iron in the XRD pattern increased.The Na_2O formed from the dissociation of Na_2CO_3 can catalyze the carbothermic reduction of the siderite.This catalytic activity may be mainly caused by an increase in the reducing reaction activity of FeO.  相似文献   

18.
介绍了真空碳热还原制备Mg-Sr合金新思路,研究了其还原反应的反应式、吉布斯自由能及临界还原温度。结果表明,真空碳热还原MgO,SrO的混合物可以得到Mg-Sr合金;其他因素不变的情况下,还原反应吉布斯自由能随反应温度的提高而减小,随系统气压的降低而减小,随反应生成的Sr,Mg混合蒸气中Sr摩尔分数的减小而减小;反应温度的提高、系统气压的降低和Sr摩尔分数的减小均有利于还原反应的进行;当系统气压为10 Pa,Sr摩尔分数为0.1时,临界反应温度为1353 K;相同系统气压下,碳热还原制备Mg-Sr合金的临界反应温度低于真空碳热炼锶、炼镁的临界温度,反应更易于进行;常规真空硅热还原制备金属镁(皮江法)的反应温度1473 K,气压13.3 Pa下,无论反应生成的Sr,Mg混合蒸气中Mg,Sr相对比例如何,真空碳热还原制备Mg-Sr合金的反应均具备热力学可行性。  相似文献   

19.
 Ionization of gas on carbothermic reduction of metal oxides containing coal by microwave heating is studied in the paper. The result of using the conventional heating method to conduct the carbothermic reduction of metal oxides containing coal is obviously weaker than that of the microwave heating in the term of the reduction time, temperature, atom mole ratio of carbon and oxygen. After studied on the cause, it is believed that gas is ionized in carbothermic reduction of solid-solid phrase between metal oxides and coals, which accelerates progress of carbon gasification and significantly improves kinetic conditions of carbothermic reduction.  相似文献   

20.
The thermodynamics of Mo-O-C and Ca-Mo-O-C systems was studied in order to understand the carbothermic reduction of molybdenum trioxide, and kinetic studies were also carried out by means of thermogravimetric analysis under argon atmosphere with a heating rate of 10 °C/min. Subsequently, reaction products at various temperatures were identified by X-ray diffraction (XRD) and the results confirmed the previous thermodynamics analysis. Meanwhile, it was found that intermediate products MoO2 and CaMoO4 appeared in the process of carbothermic reduction of MoO3 with or without CaO, which were subsequently reduced to Mo or molybdenum carbide. An experimentally determined reaction mechanism was proposed and discussed. The reduction reaction of MoO3 with carbon could be divided into two stages. The first stage includes the direct reaction between MoO3 and carbon and the carbon gasification reaction. The second stage is the gas-solid reaction between CO and MoO2, and the diffusion of gases through the surface of MoO2 determines the overall reaction rate. The activation energies of the mixtures with or without CaO were estimated to be 56.6 and 52.9 kJ/mol, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号