首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the problem of parallel computation of a schedule for a system of n unit-length tasks on m identical machines, when the tasks are related by a set of precedence constraints. We present NC algorithms for computing an optimal schedule in the case where m, the number of available machines, does not vary with time and the precedence constraints are represented by a collection of outtrees. The algorithms run on an exclusive read, exclusive write (EREW) PRAM. Their complexities are O(log n) and O((log n)2) parallel time using O(n2) and O(n) processors, respectively. The schedule computed by our algorithms is a height-priority schedule. As a complementary result we show that it is very unlikely that computing such a schedule is in NC when any of the above conditions is significantly relaxed. We prove that the problem is P-complete under logspace reductions when the precedence constraints are a collection of intrees and outtrees, or for a collection of outtrees when the number of available machines is allowed to increase with time. The time span of a height-priority schedule for an arbitrary precedence constraints graph is at most 2 − 1/(m − 1) times longer than the optimal (N. E Chen and C. L. Liu, Proc. 1974 Sagamore Computer Conference on Parallel Processing, T. Fend (Ed.), Springer-Verlag, Berlin, 1975, pp. 1–16). Whereas it is P-complete to produce the classical height-priority schedules even for very restricted precedence constraints graphs, we present a simple NC parallel algorithm which produces a different schedule that is only 2 − 1/m times the optimal.  相似文献   

2.

We consider a variant of the NP-hard problem of assigning jobs to machines to minimize the completion time of the last job. Usually, precedence constraints are given by a partial order on the set of jobs, and each job requires all its predecessors to be completed before it can start. In this paper, we consider a different type of precedence relation that has not been discussed as extensively and is called OR-precedence. In order for a job to start, we require that at least one of its predecessors is completed—in contrast to all its predecessors. Additionally, we assume that each job has a release date before which it must not start. We prove that a simple List Scheduling algorithm due to Graham (Bell Syst Tech J 45(9):1563–1581, 1966) has an approximation guarantee of 2 and show that obtaining an approximation factor of \(4/3 - \varepsilon \) is NP-hard. Further, we present a polynomial-time algorithm that solves the problem to optimality if preemptions are allowed. The latter result is in contrast to classical precedence constraints where the preemptive variant is already NP-hard. Our algorithm generalizes previous results for unit processing time jobs subject to OR-precedence constraints, but without release dates. The running time of our algorithm is \(O(n^2)\) for arbitrary processing times and it can be reduced to O(n) for unit processing times, where n is the number of jobs. The performance guarantees presented here match the best-known ones for special cases where classical precedence constraints and OR-precedence constraints coincide.

  相似文献   

3.
Minimizing Makespan and Preemption Costs on a System of Uniform Machines   总被引:1,自引:0,他引:1  
It is well known that for preemptive scheduling on uniform machines there exist polynomial time exact algorithms, whereas for non-preemptive scheduling there are probably no such algorithms. However, it is not clear how many preemptions (in total, or per job) suffice in order to guarantee an optimal polynomial time algorithm. In this paper we investigate exactly this hardness gap, formalized as two variants of the classic preemptive scheduling problem. In generalized multiprocessor scheduling (GMS) we have a job-wise or total bound on the number of preemptions throughout a feasible schedule. We need to find a schedule that satisfies the preemption constraints, such that the maximum job completion time is minimized. In minimum preemptions scheduling (MPS) the only feasible schedules are preemptive schedules with the smallest possible makespan. The goal is to find a feasible schedule that minimizes the overall number of preemptions. Both problems are NP-hard, even for two machines and zero preemptions. For GMS, we develop polynomial time approximation schemes, distinguishing between the cases where the number of machines is fixed, or given as part of the input. Our scheme for a fixed number of machines has linear running time, and can be applied also for instances where jobs have release dates, and for instances with arbitrary preemption costs. For MPS, we derive matching lower and upper bounds on the number of preemptions required by any optimal schedule. Our results for MPS hold for any instance in which a job, Jj, can be processed simultaneously by ρj machines, for some ρj ≥ 1.  相似文献   

4.
Scheduling a Single Server in a Two-machine Flow Shop   总被引:1,自引:0,他引:1  
We study the problem of scheduling a single server that processes n jobs in a two-machine flow shop environment. A machine dependent setup time is needed whenever the server switches from one machine to the other. The problem with a given job sequence is shown to be reducible to a single machine batching problem. This result enables several cases of the server scheduling problem to be solved in O(n log n) by known algorithms, namely, finding a schedule feasible with respect to a given set of deadlines, minimizing the maximum lateness and, if the job processing times are agreeable, minimizing the total completion time. Minimizing the total weighted completion time is shown to be NP-hard in the strong sense. Two pseudopolynomial dynamic programming algorithms are presented for minimizing the weighted number of late jobs. Minimizing the number of late jobs is proved to be NP-hard even if setup times are equal and there are two distinct due dates. This problem is solved in O(n 3) time when all job processing times on the first machine are equal, and it is solved in O(n 4) time when all processing times on the second machine are equal. Received November 20, 2001; revised October 18, 2002 Published online: January 16, 2003  相似文献   

5.
For the -hard problem of scheduling n jobs in a two-machine flow shop so as to minimize the total completion time, we present two equivalent lower bounds that are computable in polynomial time. We formulate the problem by the use of positional completion time variables, which results in two integer linear programming formulations with O(n 2) variables and O(n) constraints. Solving the linear programming relaxation renders a very strong lower bound with an average relative gap of only 0.8% for instances with more than 30 jobs. We further show that relaxing the formulation in terms of positional completion times by applying Lagrangean relaxation yields the same bound, no matter which set of constraints we relax.  相似文献   

6.
Kise, Ibaraki and Mine (Operations Research 26:121–126, 1978) give an O(n 2) time algorithm to find an optimal schedule for the single-machine number of late jobs problem with agreeable job release dates and due dates. Li, Chen and Tang (Operations Research 58:508–509, 2010) point out that their proof of optimality for their algorithm is incorrect by giving a counter-example. In this paper we give a correct proof of optimality for their algorithm.  相似文献   

7.
We present a linear programming approach to the problem of scheduling equal processing time jobs with release dates and deadlines on identical parallel machines. The known algorithm with complexity O(n 3log log n) of B. Simons schedules all the jobs while minimizing both the maximum completion time and the mean flow time. Our approach permits also to minimize the weighted sum of completion times and total tardiness in polynomial time for the problems without deadlines. The complexity status of these problems was open. Contract/grant sponsor: Alexander von Humboldt Foundation.  相似文献   

8.
Ideal preemptive schedules on two processors   总被引:2,自引:0,他引:2  
An ideal schedule minimizes both makespan and total flow time. It is known that the Coffman-Graham algorithm [Acta Informatica 1, 200-213, 1972] solves in polynomial time the problem of finding an ideal nonpreemptive schedule of unit-execution-time jobs with equal release dates and arbitrary precedence constraints on two identical parallel processors. This paper presents an extension of the algorithm that solves in polynomial time the preemptive counterpart of this problem. The complexity status of the preemptive problem of minimizing just the total flow time has been open.Received: 2 May 2003, J. Sethuraman: Research supported by an NSF CAREER Award DMI-0093981 and an IBM Faculty Partnership Award.  相似文献   

9.
In this paper we describe a fast parallel algorithm for preemptive scheduling of n independent jobs on m uniform machines. Each job has a processing requirement, and each machine processes jobs at a different rate. The goal of the scheduling algorithm is to find a schedule which minimizes the time at which the last job is completed. T. Gonzalez and S. Sahni have developed a sequential algorithm which solves this problem in O(n + m log m) time. We develop a parallel version of this algorithm for a Concurrent Read Exclusive Write (CREW) shared memory computer. The algorithm runs in O(log n + log3m) time using n processors.  相似文献   

10.
We study the problem of minimizing the number of late jobs on a single machine where job processing times are known precisely and due dates are uncertain. The uncertainty is captured through a set of scenarios. In this environment, an appropriate criterion to select a schedule is to find one with the best worst-case performance, which minimizes the maximum number of late jobs over all scenarios. For a variable number of scenarios and two distinct due dates over all scenarios, the problem is proved NP-hard in the strong sense and non-approximable in pseudo-polynomial time with approximation ratio less than 2. It is polynomially solvable if the number s of scenarios and the number v of distinct due dates over all scenarios are given constants. An O(nlog?n) time s-approximation algorithm is suggested for the general case, where n is the number of jobs, and a polynomial 3-approximation algorithm is suggested for the case of unit-time jobs and a constant number of scenarios. Furthermore, an O(n s+v?2/(v?1) v?2) time dynamic programming algorithm is presented for the case of unit-time jobs. The problem with unit-time jobs and the number of late jobs not exceeding a given constant value is solvable in polynomial time by an enumeration algorithm. The obtained results are related to a min-max assignment problem, an exact assignment problem and a multi-agent scheduling problem.  相似文献   

11.
We investigate the problem of scheduling n jobs in s-stage hybrid flowshops with parallel identical machines at each stage. The objective is to find a schedule that minimizes the sum of weighted completion times of the jobs. This problem has been proven to be NP-hard. In this paper, an integer programming formulation is constructed for the problem. A new Lagrangian relaxation algorithm is presented in which precedence constraints are relaxed to the objective function by introducing Lagrangian multipliers, unlike the commonly used method of relaxing capacity constraints. In this way the relaxed problem can be decomposed into machine type subproblems, each of which corresponds to a specific stage. A dynamic programming algorithm is designed for solving parallel identical machine subproblems where jobs may have negative weights. The multipliers are then iteratively updated along a subgradient direction. The new algorithm is computationally compared with the commonly used Lagrangian relaxation algorithms which, after capacity constraints are relaxed, decompose the relaxed problem into job level subproblems and solve the subproblems by using the regular and speed-up dynamic programming algorithms, respectively. Numerical results show that the new Lagrangian relaxation method produces better schedules in much shorter computation time, especially for large-scale problems.  相似文献   

12.
In a scheduling problem, denoted by 1|prec|∑C i in the Graham notation, we are given a set of n jobs, together with their processing times and precedence constraints. The task is to order the jobs so that their total completion time is minimized. 1|prec|∑C i is a special case of the Traveling Repairman Problem with precedences. A natural dynamic programming algorithm solves both these problems in 2 n n O(1) time, and whether there exists an algorithms solving 1|prec|∑C i in O(c n ) time for some constant c<2 was an open problem posted in 2004 by Woeginger. In this paper we answer this question positively.  相似文献   

13.
Given a set ofn events (or jobs) which are constrained by a precedence relation, we want to order them into a totally ordered sequence (i. e., one machine schedule). Each event has an integer cost (which may be negative) associated with it, and our objective is to minimize the maximum cumulative cost within a schedule, i. e., to obtain a cumulative cost-optimal schedule. We introduce the concept of “strict optimality” and investigate properties of strictly optimal schedules. The usefulness of these schedules is demonstrated in the special case where the precedence relation is “series-parallel”. For this case we describe an algorithm which finds a cumulative cost-optimal schedule inO (n logn) time.  相似文献   

14.
In this note, we give a proof that several vertex ordering problems can be solved in O (2 n ) time and O (2 n ) space, or in O (4 n ) time and polynomial space. The algorithms generalize algorithms for the Travelling Salesman Problem by Held and Karp (J. Soc. Ind. Appl. Math. 10:196–210, 1962) and Gurevich and Shelah (SIAM J. Comput. 16:486–502, 1987). We survey a number of vertex ordering problems to which the results apply.  相似文献   

15.
We study the communication primitives of broadcasting (one-to-all communication) and gossiping (all-to-all communication) in known topology radio networks, i.e., where for each primitive the schedule of transmissions is precomputed based on full knowledge about the size and the topology of the network. We show that gossiping can be completed in time units in any radio network of size n, diameter D, and maximum degree Δ=Ω(log n). This is an almost optimal schedule in the sense that there exists a radio network topology, specifically a Δ-regular tree, in which the radio gossiping cannot be completed in less than units of time. Moreover, we show a schedule for the broadcast task. Both our transmission schemes significantly improve upon the currently best known schedules by Gąsieniec, Peleg, and Xin (Proceedings of the 24th Annual ACM SIGACT-SIGOPS PODC, pp. 129–137, 2005), i.e., a O(D+Δlog n) time schedule for gossiping and a D+O(log 3 n) time schedule for broadcast. Our broadcasting schedule also improves, for large D, a very recent O(D+log 2 n) time broadcasting schedule by Kowalski and Pelc. A preliminary version of this paper appeared in the proceedings of ISAAC’06. F. Cicalese supported by the Sofja Kovalevskaja Award 2004 of the Alexander von Humboldt Stiftung. F. Manne and Q. Xin supported by the Research Council of Norway through the SPECTRUM project.  相似文献   

16.
We present new efficient deterministic and randomized distributed algorithms for decomposing a graph with n nodes into a disjoint set of connected clusters with radius at most k−1 and having O(n 1+1/k ) intercluster edges. We show how to implement our algorithms in the distributed CONGEST\mathcal{CONGEST} model of computation, i.e., limited message size, which improves the time complexity of previous algorithms (Moran and Snir in Theor. Comput. Sci. 243(1–2):217–241, 2000; Awerbuch in J. ACM 32:804–823, 1985; Peleg in Distributed Computing: A Locality-Sensitive Approach, 2000) from O(n) to O(n 1−1/k ). We apply our algorithms for constructing low stretch graph spanners and network synchronizers in sublinear deterministic time in the CONGEST\mathcal{CONGEST} model.  相似文献   

17.
Searching a Polygonal Region by a Boundary Searcher   总被引:1,自引:0,他引:1       下载免费PDF全文
This paper considers the problem of planning the motion of a searcher in a polygonal region to eventually"see"an intruder that is unpredictable and capable of moving arbitrarily fast.A searcher is called the boundary searcher if he continuously moves on the polygon boundary and can see only along the rays of the flashlights he holds at a time. We present necessary and sufficient conditions for an n-sided polygon to be searchable by a boundary searcher.Based on our characterization,the equivalence of the ...  相似文献   

18.
Construction of energy-saving schedules for the execution of n jobs on a processor with the use of the dynamic voltage scaling (DVS) mechanism is considered. A formal problem statement is presented. The problem is shown to be NP-hard. An algorithm with complexity O(n 2/ε) guaranteeing finding of a (1 + ε)-approximate solution is suggested.  相似文献   

19.
Y. Nekrich 《Algorithmica》2007,49(2):94-108
In this paper we present new space efficient dynamic data structures for orthogonal range reporting. The described data structures support planar range reporting queries in time O(log n+klog log (4n/(k+1))) and space O(nlog log n), or in time O(log n+k) and space O(nlog  ε n) for any ε>0. Both data structures can be constructed in O(nlog n) time and support insert and delete operations in amortized time O(log 2 n) and O(log nlog log n) respectively. These results match the corresponding upper space bounds of Chazelle (SIAM J. Comput. 17, 427–462, 1988) for the static case. We also present a dynamic data structure for d-dimensional range reporting with search time O(log  d−1 n+k), update time O(log  d n), and space O(nlog  d−2+ε n) for any ε>0. The model of computation used in our paper is a unit cost RAM with word size log n. A preliminary version of this paper appeared in the Proceedings of the 21st Annual ACM Symposium on Computational Geometry 2005. Work partially supported by IST grant 14036 (RAND-APX).  相似文献   

20.
A graph G is said to be a bicluster graph if G is a disjoint union of bicliques (complete bipartite subgraphs), and a cluster graph if G is a disjoint union of cliques (complete subgraphs). In this work, we study the parameterized versions of the NP-hard Bicluster Graph Editing and Cluster Graph Editing problems. The former consists of obtaining a bicluster graph by making the minimum number of modifications in the edge set of an input bipartite graph. When at most k modifications are allowed (Bicluster(k) Graph Editing problem), this problem is FPT, and can be solved in O(4 k nm) time by a standard search tree algorithm. We develop an algorithm of time complexity O(4 k +n+m), which uses a strategy based on modular decomposition techniques; we slightly generalize the original problem as the input graph is not necessarily bipartite. The algorithm first builds a problem kernel with O(k 2) vertices in O(n+m) time, and then applies a bounded search tree. We also show how this strategy based on modular decomposition leads to a new way of obtaining a problem kernel with O(k 2) vertices for the Cluster(k) Graph Editing problem, in O(n+m) time. This problem consists of obtaining a cluster graph by modifying at most k edges in an input graph. A previous FPT algorithm of time O(1.92 k +n 3) for this problem was presented by Gramm et al. (Theory Comput. Syst. 38(4), 373–392, 2005, Algorithmica 39(4), 321–347, 2004). In their solution, a problem kernel with O(k 2) vertices is built in O(n 3) time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号