首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper introduces a general decomposition scheme for single stage scheduling problems with jobs that have arbitrary release dates. We assume that the objective function is monotone in the completion time of each job. The decomposition scheme has significant theoretical and practical relevance. When assuming equal processing times, we can reduce the number of steps required to solve several well-known nonpreemptive single machine scheduling problems by O(n3)\mathcal{O}(n^{3}), provided the processing time p is constant. Specifically, we develop new approaches that solve the problems 1|r i ,p i =p|∑f i (C i ) and 1|r i ,p i =p|∑w i U i in O(n4)\mathcal{O}(n^{4}) time; the algorithms that have been described in the literature for these problems operate in O(n7)\mathcal{O}(n^{7}). Moreover, solution approaches for NP\mathcal{NP}-hard problems with unequal processing times may also benefit from our decomposition rule. This is particularly true if p max/p min is close to 1. Using the decomposition rule, either the problem size is reduced or additional information about the maximal schedule length is obtained.  相似文献   

2.
P. Brucker  L. Nordmann 《Computing》1994,52(2):97-122
Thek-track assignment problem is a scheduling problem withn jobs andk machines. Each machinej has a certain operational period (track) which starts at timea j and ends at timeb j . Each jobi has a specific start times i and a specific finish timet i . A schedule is an assignment of certain jobs to machines such that the intervals [s i ,t i [assigned to the same machinej do not overlap and fit into track [a j ,b j [. We are interested in a schedule which maximizes the number of assigned jobs. AO(n k?1 k!k k+1 )-algorithm which solves this problem is presented. Furthermore it is shown that the more general problem, in which for each track only a given set of jobs can be scheduled on that track, can be solved inO(n k k!k k )-time.  相似文献   

3.
Consideration was given to the classical NP-hard problem 1|rj|Lmax of the scheduling theory. An algorithm to determine the optimal schedule of processing n jobs where the job parameters satisfy a system of linear constraints was presented. The polynomially solvable area of the problem 1|rj|Lmax was expanded. An algorithm was described to construct a Pareto-optimal set of schedules by the criteria Lmax and Cmax for complexity of O(n3logn) operations.  相似文献   

4.
In this paper we study parallel batch scheduling problems with bounded batch capacity and equal-length jobs in a single and parallel machine environment. It is shown that the feasibility problem 1|p-batch,b<n,r j ,p j =p,C j d j |− can be solved in O(n 2) time and that the problem of minimizing the maximum lateness can be solved in O(n 2log n) time. For the parallel machine problem P|p-batch,b<n,r j ,p j =p,C j d j |− an O(n 3log n)-time algorithm is provided, which can also be used to solve the problem of minimizing the maximum lateness in O(n 3log 2 n) time.  相似文献   

5.
We consider the problem of maintaining information about the rank of a matrix M under changes to its entries. For an n×n matrix M, we show an amortized upper bound of O(n ω?1) arithmetic operations per change for this problem, where ω<2.373 is the exponent for matrix multiplication, under the assumption that there is a lookahead of up to Θ(n) locations. That is, we know up to the next Θ(n) locations (i 1,j 1),(i 2,j 2),…?, whose entries are going to change, in advance; however we do not know the new entries in these locations in advance. We get the new entries in these locations in a dynamic manner. The dynamic matrix rank problem was first studied by Frandsen and Frandsen who showed an upper bound of O(n 1.575) and a lower bound of Ω(n) for this problem and later Sankowski showed an upper bound of O(n 1.495) for this problem when allowing randomization and a small probability of error. These algorithms do not assume any lookahead. For the dynamic matrix rank problem with lookahead, Sankowski and Mucha showed a randomized algorithm (with a small probability of error) that is more efficient than these algorithms.  相似文献   

6.
Here we propose an efficient algorithm for computing the smallest enclosing circle whose center is constrained to lie on a query line segment. Our algorithm preprocesses a given set of n points P={p1,p2,…,pn} such that for any query line or line segment L, it efficiently locates a point c on L that minimizes the maximum distance among the points in P from c. Roy et al. [S. Roy, A. Karmakar, S. Das, S.C. Nandy, Constrained minimum enclosing circle with center on a query line segment, in: Proc. of the 31st Mathematical Foundation of Computer Science, 2006, pp. 765-776] have proposed an algorithm that solves the query problem in O(log2n) time using O(nlogn) preprocessing time and O(n) space. Our algorithm improves the query time to O(logn); but the preprocessing time and space complexities are both O(n2).  相似文献   

7.
LetQ = {q1, q2,..., qn} be a set ofn points on the plane. The largest empty circle (LEG) problem consists in finding the largest circleC with center in the convex hull ofQ such that no pointq i εQ lies in the interior ofC. Shamos recently outlined anO(n logn) algorithm for solving this problem.(9) In this paper it is shown that this algorithm does not always work correctly. A different approach is proposed here and shown to also result in anO(n logn) algorithm. The new approach has the advantage that it can also solve more general problems. In particular, it is shown that if the center ofC is constrained to lie in an arbitrary convexn-gon, an0(n logn) algorithm can still be obtained. Finally, an0(n logn +k logn) algorithm is given for solving this problem when the center ofC is constrained to lie in an arbitrary simplen-gonP. wherek denotes the number of intersections occurring between edges ofP and edges of the Voronoi diagram ofQ andk ?O(n 2).  相似文献   

8.
We consider the following geometric pattern matching problem: Given two sets of points in the plane, P and Q, and some (arbitrary) δ>0, find a similarity transformation T (translation, rotation and scale) such that h(T(P),Q)<δ, where h(⋅,⋅) is the directional Hausdorff distance with L as the underlying metric; or report that none exists. We are only interested in the decision problem, not in minimizing the Hausdorff distance, since in the real world, where our applications come from, δ is determined by the practical uncertainty in the position of the points (pixels). Similarity transformations have not been dealt with in the context of the Hausdorff distance and we fill the gap here. We present efficient algorithms for this problem imposing a reasonable separation restriction on the points in the set Q. If the L distance between every pair of points in Q is at least 8δ, then the problem can be solved in O(mn2logn) time, where m and n are the numbers of points in P and Q respectively. If the L distance between every pair of points in Q is at least , for some c, 0<c<1, we present a randomized approximate solution with expected runtime O(n2c−4ε−8log4mn), where ε>0 controls the approximation. Our approximation is on the size of the subset, BP, such that h(T(B),Q)<δ and |B|>(1−ε)|P| with high probability.  相似文献   

9.
The classical problem of scheduling theory that is NP-hard in the strong sense 1|r j|L max is considered. New properties of optimal schedules are found. A polynomially resolved case of the problem is selected, when the release times (r j), the processing time (p j), and due dates of completion of processing (d j) of jobs satisfy the constraints d 1 ≤ ... ≤ d n and d 1 ? r 1 ? p 1 ≥ ... ≥ d n ? r n ? p n. An algorithm of run time O(n 3logn) finds Pareto-optimal sets of schedules according to the criteria L max and C max that contains no more than n variants.  相似文献   

10.
In this paper, we consider a single machine scheduling problem with piecewise-linear deterioration where its objective is to minimize the number of tardy jobs, in which the processing time of each job depends on its starting time where all the jobs have a specific deterioration rate. The problem is known to be NP-hard; therefore a Branch and Bound algorithm and a heuristic algorithm with O(n2) are proposed. The proposed heuristic algorithm has been utilized for solving large scale problems and upper bound of the B&B algorithm. Computational experiments on 1840 problems demonstrate that the Branch and Bound procedure can solve problems with 28 jobs and 85.4% of all the sample problems optimally showing the high capability of the proposed procedure. Also it is shown that the average value of the ratio of optimal answer to the heuristic algorithm result with the objective ∑(1-Ui)(1-Ui) is at last 1.08 which is more efficient in contrast to other proposed algorithms in related studies in the literature. According to high efficacy of the heuristic algorithm, large scale samples are also being solved and the results are presented. A specific form of this problem is also being considered and it is proven that the B&B procedure can handle problems with more jobs even up to 44 jobs.  相似文献   

11.
Given an alphabet Σ={1,2,…,|Σ|} text string T∈Σ n and a pattern string P∈Σ m , for each i=1,2,…,nm+1 define L p (i) as the p-norm distance when the pattern is aligned below the text and starts at position i of the text. The problem of pattern matching with L p distance is to compute L p (i) for every i=1,2,…,nm+1. We discuss the problem for d=1,2,∞. First, in the case of L 1 matching (pattern matching with an L 1 distance) we show a reduction of the string matching with mismatches problem to the L 1 matching problem and we present an algorithm that approximates the L 1 matching up to a factor of 1+ε, which has an O(\frac1e2nlogmlog|S|)O(\frac{1}{\varepsilon^{2}}n\log m\log|\Sigma|) run time. Then, the L 2 matching problem (pattern matching with an L 2 distance) is solved with a simple O(nlog m) time algorithm. Finally, we provide an algorithm that approximates the L matching up to a factor of 1+ε with a run time of O(\frac1enlogmlog|S|)O(\frac{1}{\varepsilon}n\log m\log|\Sigma|) . We also generalize the problem of String Matching with mismatches to have weighted mismatches and present an O(nlog 4 m) algorithm that approximates the results of this problem up to a factor of O(log m) in the case that the weight function is a metric.  相似文献   

12.
We use algorithmic tools for graphs of small treewidth to address questions in complexity theory. For our main construction, we prove that multiplicatively disjoint arithmetic circuits of size n O(1) and treewidth k can be simulated by bounded fan-in arithmetic formulas of depth O(k 2logn). From this we derive an analogous statement for syntactically multilinear arithmetic circuits, which strengthens the central theorem of M. Mahajan and B.V.R. Rao (Proc. 33rd International Symposium on Mathematical Foundations of Computer Science, vol. 5162, pp. 455–466, 2008). We show our main construction has the following three applications:
  • Bounded width arithmetic circuits of size n O(1) can be balanced to depth O(logn), provided chains of iterated multiplication in the circuit are of length O(1).
  • Boolean bounded fan-in circuits of size n O(1) and treewidth k can be simulated by bounded fan-in formulas of depth O(k 2logn). This strengthens in the non-uniform setting the known inclusion that SC0?NC1.
  • We demonstrate treewidth restricted cases of Directed-Reachability and Circuit Value Problem that can be solved in LogDCFL.
We also give a construction showing, for both arithmetic and Boolean circuits, that any circuit of size n O(1) and treewidth O(log i n) can be simulated by a circuit of width O(log i+1 n) and size n c , where c=O(1), if i=0, and c=O(loglogn) otherwise.  相似文献   

13.
We consider the problem of finding the extrema of a distributed multiset in a ring, that is, of determining the minimum and the maximum values,xminandxmax, of a multisetX= {x0,x2, ...,xn−1} whose elements are drawn from a totally ordered universeUand stored at thenentities of a ring network. This problem is unsolvable if the ring size is not known to the entities, and it has complexity Θ(n2) in the case of asynchronous rings of known size. We show that, in synchronous rings of known size, this problem can always be solved inO((c+ logn) ·n) bits andO(n·c·x1/c) time for any integerc> 0, wherex= Max{|xmin|, |xmax|}. The previous solutions requiredO(n2) bits and the same amount of time. Based on these results, we also present a bit-optimal solution to the problem of finding the multiplicity of the extrema.  相似文献   

14.
A flow-shop batching problem with consistent batches is considered in which the processing times of all jobs on each machine are equal to p and all batch set-up times are equal to s. In such a problem, one has to partition the set of jobs into batches and to schedule the batches on each machine. The processing time of a batch B i is the sum of processing times of operations in B i and the earliest start of B i on a machine is the finishing time of B i on the previous machine plus the set-up time s. Cheng et al. (Naval Research Logistics 47:128–144, 2000) provided an O(n) pseudopolynomial-time algorithm for solving the special case of the problem with two machines. Mosheiov and Oron (European Journal of Operational Research 161:285–291, 2005) developed an algorithm of the same time complexity for the general case with more than two machines. Ng and Kovalyov (Journal of Scheduling 10:353–364, 2007) improved the pseudopolynomial complexity to \(O(\sqrt{n})\). In this paper, we provide a polynomial-time algorithm of time complexity O(log?3 n).  相似文献   

15.
We study the problem of minimizing the number of late jobs on a single machine where job processing times are known precisely and due dates are uncertain. The uncertainty is captured through a set of scenarios. In this environment, an appropriate criterion to select a schedule is to find one with the best worst-case performance, which minimizes the maximum number of late jobs over all scenarios. For a variable number of scenarios and two distinct due dates over all scenarios, the problem is proved NP-hard in the strong sense and non-approximable in pseudo-polynomial time with approximation ratio less than 2. It is polynomially solvable if the number s of scenarios and the number v of distinct due dates over all scenarios are given constants. An O(nlog?n) time s-approximation algorithm is suggested for the general case, where n is the number of jobs, and a polynomial 3-approximation algorithm is suggested for the case of unit-time jobs and a constant number of scenarios. Furthermore, an O(n s+v?2/(v?1) v?2) time dynamic programming algorithm is presented for the case of unit-time jobs. The problem with unit-time jobs and the number of late jobs not exceeding a given constant value is solvable in polynomial time by an enumeration algorithm. The obtained results are related to a min-max assignment problem, an exact assignment problem and a multi-agent scheduling problem.  相似文献   

16.
When we have n results x1,...,xn of repeated measurement of the same quantity, the traditional statistical approach usually starts with computing their sample average E and their sample variance V. Often, due to the inevitable measurement uncertainty, we do not know the exact values of the quantities, we only know the intervals xi of possible values of x1 In such situations, for different possible values xixi, we get different values of the variance. We must therefore find the range V of possible values of V. It is known that in general, this problem is NP-hard. For the case when the measurements are sufficiently accurate (in some precise sense), it is known that we can compute the interval V in quadratic time O(n2). In this paper, we describe a new algorithm for computing V that requires time O(n log(n)) (which is much faster than O(n2)).  相似文献   

17.
Exponential-time approximation of weighted set cover   总被引:1,自引:0,他引:1  
The Set Cover problem belongs to a group of hard problems which are neither approximable in polynomial time (at least with a constant factor) nor fixed parameter tractable, under widely believed complexity assumptions. In recent years, many researchers design exact exponential-time algorithms for problems of that kind. The goal is getting the time complexity still of order O(cn), but with the constant c as small as possible. In this work we extend this line of research and we investigate whether the constant c can be made even smaller when one allows constant factor approximation.In fact, we describe a kind of approximation schemes—trade-offs between approximation factor and the time complexity. We use general transformations from exponential-time exact algorithms to approximations that are faster but still exponential-time. For example, we show that for any reduction rate r, one can transform any O(cn)-time1 algorithm for Set Cover into a (1+lnr)-approximation algorithm running in time O(cn/r). We believe that results of that kind extend the applicability of exact algorithms for NP-hard problems.  相似文献   

18.
This paper studies a bicriteria scheduling problem on a series-batching machine with objective of minimizing makespan and total completion time simultaneously. A series-batching machine is a machine that can handle up to b jobs in a batch and the completion time of all jobs in a batch is equal to the finishing time of the last job in the batch and the processing time of a batch is the sum of the processing times of jobs in the batch. In addition, there is a constant setup time s for each batch. For the problem we can find all Pareto optimal solutions in O(n2) time by a dynamic programming algorithm, where n denotes the number of jobs.  相似文献   

19.
Due to a large number of applications, bicliques of graphs have been widely considered in the literature. This paper focuses on non-induced bicliques. Given a graph G=(V,E) on n vertices, a pair (X,Y), with X,YV, XY=∅, is a non-induced biclique if {x,y}∈E for any xX and yY. The NP-complete problem of finding a non-induced (k1,k2)-biclique asks to decide whether G contains a non-induced biclique (X,Y) such that |X|=k1 and |Y|=k2. In this paper, we design a polynomial-space O(n1.6914)-time algorithm for this problem. It is based on an algorithm for bipartite graphs that runs in time O(n1.30052). In deriving this algorithm, we also exhibit a relation to the spare allocation problem known from memory chip fabrication. As a byproduct, we show that the constraint bipartite vertex cover problem can be solved in time O(n1.30052).  相似文献   

20.
In this paper we consider the problem of scheduling n jobs on a single machine, where the jobs are processed in batches and the processing time of each job is a step function depending on its waiting time, which is the time between the start of the processing of the batch to which the job belongs and the start of the processing of the job. For job i, if its waiting time is less than a given threshold value D, then it requires a basic processing time a i ; otherwise, it requires an extended processing time a i +b i . The objective is to minimize the completion time of the last job. We first show that the problem is NP-hard in the strong sense even if all b i are equal, it is NP-hard even if b i =a i for all i, and it is non-approximable in polynomial time with a constant performance guarantee Δ<3/2, unless . We then present O(nlog n) and O(n 3F−1log n/F F ) algorithms for the case where all a i are equal and for the case where there are F, F≥2, distinct values of a i , respectively. We further propose an O(n 2log n) approximation algorithm with a performance guarantee for the general problem, where m * is the number of batches in an optimal schedule. All the above results apply or can be easily modified for the corresponding open-end bin packing problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号