首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《高电压技术》2021,47(9):3153-3162
近年来,高压XLPE电缆阻水缓冲层烧蚀故障频发,引起了行业内广泛关注。为了探索缓冲层烧蚀机理,搭建简化试验平台并对应电缆实际运行工况条件,开展了对比试验研究;同时,基于110 k V电缆典型结构建立轴向有限元仿真模型,按照阻水缓冲带的实测性能参数进行赋值;最后调节波纹铝护套与缓冲层的接触形式,开展了电势及电场分布模拟分析。研究发现:缓冲带受潮将导致其电阻率增大,介电常数升高,并在外加电流下引发白色物质生成;白色物质中包含阻水粉成分及铝反应产物,其不导电性易导致铝护套与绝缘屏蔽之间电气接触不良;当阻水缓冲层与波纹铝护套连续接触不良的轴向长度达到0.4m,在尺寸为0.1mm气隙中的场强已超过3 k V/mm,足以引发放电。缓冲层受潮是发生烧蚀故障的主要原因,缓冲层与铝护套的间隙也会影响气隙放电的发生,因此建议高压电缆在制造和施工阶段应避免缓冲层受潮,同时应严格保障缓冲层与铝护套有效连续的电气接触。  相似文献   

2.
为研究皱纹铝护套高压交联聚乙烯绝缘电缆缓冲层烧蚀机理,首先,通过对发生烧蚀的110 kV XLPE绝缘电缆进行故障分析,提出电缆径向电流集中是导致烧蚀故障的原因.其次,建立故障电缆的仿真模型,计算缓冲层与皱纹铝护套接触部分的电流密度最大值及其分布情况,并通过模型试验与公式计算验证仿真结果,发现皱纹铝护套波谷嵌入缓冲层的深度和缓冲层体积电阻率影响着径向电流的大小与分布.最后,通过设计模拟试验,证明径向电流集中是导致缓冲层烧蚀的原因之一,并在恒温箱中对模拟烧蚀试验的环境条件进行控制,通过偏光显微镜对比试验样品和烧蚀铝护套的表面形貌.结果表明:模拟烧蚀试验中发生的烧蚀过程与实际故障电缆中的烧蚀过程相同,且随着缓冲层中电流密度最大值的增大,烧蚀的起始时间缩短.本文揭示了皱纹铝护套烧蚀故障径向电流集中的物理机理,为相关故障诊断及防护提供了理论和试验依据.  相似文献   

3.
近年来,高压电缆缓冲层烧蚀故障频发,为解决这一问题,本研究建立XLPE电缆仿真模型,研究不同电阻率下缓冲层的电场分布特性;基于故障机理提出了缓冲层修复方案与全套现场修复工艺,分别对长度为1.2 m和6 m的220kV高压交联聚乙烯故障电缆进行修复试验,并从接触电阻与电容电流两个角度对修复效果进行评价。结果表明:随着缓冲层体积电阻率的升高,缓冲层与铝护套之间电场畸变严重,极易引发局部放电,从而引起电缆故障;而随着缓冲层体积电阻率的下降,缓冲层与铝护套间的电气连接逐渐恢复,电场分布趋于均匀。注入导电修复介质后,缓冲层与铝护套之间的电阻下降幅度可达41.67%,表明缓冲层与铝护套电气连接性能得到恢复。  相似文献   

4.
为研究电缆缓冲层放电烧蚀机理,根据缺陷现象分析缓冲层与铝护套接触状态的变化,建立用于分析缺陷的电路模型,根据模型分析绝缘屏蔽层上的感应电压及影响感应电压的主要因素.从击穿事故线路中截取长度为15 m的缺陷电缆样本,并用缺陷电缆样本搭建局部放电检测实验平台.结果表明:绝缘屏蔽层的感应电压与缺陷数量、组合层电阻率以及缺陷处白色粉末厚度呈正比,与缓冲层和铝护套之间的接触面积呈反比,且缺陷电缆内部的放电信号具有明显的接触不良类放电特征.  相似文献   

5.
为了对运行电压下电缆缓冲层轴向沿面烧蚀故障机理进行研究,本文搭建了电力电缆等值电路,根据110kV XLPE电缆结构及实际尺寸,计算了电缆发生放电现象时对电缆金属护套与绝缘外屏蔽脱离长度的要求。结果表明:缓冲层电阻率对脱离长度影响显著,降低缓冲层电阻率可增加允许脱离长度,当电阻率达到105Ω?mm以下时,允许的脱离长度达1186mm,不易发生轴向沿面放电,此外,允许纵向电压及缓冲层结构尺寸也是控制缓冲层缺陷的特征参数。#$NL关键词:电缆;缓冲层;波纹铝护套;烧蚀;故障#$NL中图分类号:请作者自查  相似文献   

6.
在分析缓冲层材料特性的基础上,论述国内外有关缓冲层故障的研究现状,并为未来研究提供改进建议。综述性研究表明:放电是引起缓冲层烧蚀故障的直接原因,而电缆受潮是此类故障发生的必要条件。长期受潮会加速白粉的形成,并导致缓冲层电阻率升高。当铝护套与绝缘屏蔽层间存在气隙时,缓冲层电阻率升高、白粉的形成与过电压的冲击会使气隙内局部场强超过击穿场强,最终导致放电烧蚀。全文综述结果总结缓冲层故障成因,并在此基础上提出相应的调整建议,可以为缓冲层故障防范提供参考。  相似文献   

7.
近年,国内交联聚乙烯高压电缆本体故障比例有所升高,主要原因之一是铝护套与外半导电层之间的缓冲层有白色粉末析出,导致接触电阻增大从而引起缓冲层烧蚀。结合连续两次发生的由内置测温光纤导致电缆本体故障的案例,通过电缆解体分析、光纤外皮绝缘检测和耐压同步局部放电等方式,发现外护套为绝缘材质的内置光纤将进一步加速白色粉末析出,产生悬浮电压导致电缆故障。建议采用局部放电在线检测、X光检测等方式开展疑似电缆的日常检测工作。  相似文献   

8.
缓冲层烧蚀故障严重危害高压电缆的安全可靠运行.为进一步揭示缓冲层烧蚀机理,开展了高压电缆缓冲层烧蚀试验,研究了缓冲层受潮进水对烧蚀故障的影响.此外,利用铝板与几种常用带材组合成试验模型,验证了缓冲层烧蚀的其他诱因.结合国内现有研究成果,提出了高压电缆缓冲层及金属套的结构设计、生产过程控制等方面的改善建议.研究结果可为高...  相似文献   

9.
为了掌握电缆铝护套至导体热阻随温度变化的规律,提出了电缆铝护套至导体热阻的模型,通过高压单芯电缆阶跃电流温升实验,得到电缆各层在不同稳态下的温度分布,并根据热阻定义,推导电缆各层在不同温度下的热阻值及其随温度变化的规律。结果表明:电缆铝护套至导体热阻随温度的升高而降低,递减速率随温度的升高而变缓,并趋于稳定;单位长度电缆的绝缘层热阻和铝护套至导体热阻分别趋近于0.50 K.m/W和0.55K.m/W,其值比IEC 60287标准计算值分别小0.054 7K.m/W和0.077 1K.m/W;求得铝护套至导体热阻率为3.070K.m/W,比标准值小0.43K.m/W;气隙层热阻值为空气强制对流热阻值和接触热阻值并联之和,其值比标准值小1个数量级。  相似文献   

10.
近年来,随着电缆使用率增长、使用年限增加,由电缆半导电缓冲层烧蚀引起的电缆故障也呈现快速上升趋势。通过统计国网公司系统内实际电缆故障现状,分析电缆缓冲层烧蚀机理,结合国内外研究现状,针对平滑铝套与皱纹铝套电缆进行对比分析,提出平滑铝套高压电缆试运行建议及减缓缓冲层烧蚀故障的办法,对有效保障高压电缆安全稳定运行具有重要指导意义。  相似文献   

11.
为研究电缆铝护套结构对绝缘屏蔽层悬浮电位以及缓冲层间电场强度的影响,优化电缆铝护套结构进而降低缓冲层烧蚀缺陷的严重程度,本文建立缓冲层分压模型以及Comsol仿真模型,分析在缓冲层白斑缺陷出现后,计算不同电缆铝护套结构下的绝缘屏蔽层悬浮电位以及缓冲层电场强度。仿真和理论分析结果表明铝护套最小内径φmin和铝护套波谷处曲率K与绝缘屏蔽层悬浮电位以及缓冲层间电场强度有如下关系:φmin和K越小,绝缘屏蔽层悬浮电位越小,缓冲层间电场强度降低,其中φmin的影响更明显;以本文缺陷电缆为例,仿真定量分析得出φmin和K优化后绝缘屏蔽层悬浮电位分别下降了30%、13.7%;缓冲层间电场强度分别下降了30.3%、13%。  相似文献   

12.
近年来,频发的波纹铝护套电缆缓冲层烧蚀故障引起了国内电力行业对平滑铝护套高压交联聚乙烯(XLPE)电缆的广泛关注,其弯曲性能是限制工程应用的技术难点.该文搭建平滑铝护套XLPE电缆的四点弯曲三维仿真模型,以内聚力模型模拟胶层的力学行为,研究有/无热熔胶粘接、缓冲层厚度、非金属外护套厚度及材料、电缆径向尺寸等对平滑铝护套复合结构弯曲性能的影响.结果表明,若铝护套不与外护套粘接,其抗弯曲变形能力差,易起皱并挤压内部绝缘;粘接后形成整体复合护套,其抗弯能力与总厚度有关,其中,铝护套厚度可根据短路容量要求确定,而由外护套补足抗弯强度所需总厚度,且外护套材料弹性模量不应低于800MPa;缓冲层厚度对铝护套弯曲性能影响较小,主要从吸收绝缘热膨胀角度进行设计.基于研究结论,试制了110kV平滑铝护套XLPE电缆并通过型式试验验证.  相似文献   

13.
高压交联聚乙烯(cross-linked polyethylene,XLPE)电缆缓冲层烧蚀故障频发,在行业内引起广泛关注。电缆结构优化有利于解决放电烧蚀问题,文中从缓冲层放电灼伤机理角度出发,建立电缆有限元模型进行电场仿真,分析讨论不同结构参数下气隙电场分布的变化,并开展模拟试验对结构优化方案进行研究。结果表明:在满足电缆设计要求的前提下,减小缓冲层厚度、减小轧纹深度、增加金属套和缓冲层的挤压深度有利于减弱接触不良导致的气隙电场畸变;平滑铝套结构与缓冲层的接触电阻较小,在抑制缓冲层放电烧蚀故障方面具有优势。  相似文献   

14.
在近10年全国的电缆事故中已发现大量的缓冲层烧蚀问题,为探索烧蚀产生因素,文中基于压力的影响建立了数学模型,考虑水汽的渗入对模型的影响,并对多组产生缓冲层现象的电缆进行了分析。计算和仿真结果表明,电缆阻水带因电缆绝缘本体重力和电缆敷设过程中的外力影响,会在1 mm2接触点上产生3.75 A的集中电流,使得在阻水带和铝套接触处温度升高到176℃,而铝和聚丙烯酸钠在80℃时会发生反应生成氧化铝粉末,产生阻水带上的“白斑”;而绝缘屏蔽层上相同的电流长时间作用,则会引起绝缘屏蔽的老化。  相似文献   

15.
《高压电器》2021,57(10)
近年来高压电缆缓冲层故障频发,可能由波纹护套与缓冲层空气间隙局部电场畸变引起,现有电场仿真研究缺乏对波纹护套压纹深度、节距以及缓冲层阻抗的考虑。文中基于麦克斯韦方程建立了考虑电缆波纹金属护套实际几何结构的数值仿真模型和平滑金属护套电缆的电路计算模型,定量分析了110 kV电缆缓冲层材料电导率和介电常数以及波纹金属护套几何结构对空气间隙电势与电场分布的影响。研究表明,当缓冲层材料电导率在10~(-6)~10~(-9)S/m时,空气间隙电势主要受缓冲层材料电导率的影响;当缓冲层材料电导率小于10~(-9)S/m时,空气间隙电势主要受材料介电常数的影响;当缓冲层材料电导率大于10~(-6)S/m时,空气间隙电势接近于0。波纹金属护套的存在会使空气间隙电势分布呈现与波纹相似的形状,电场集中在接触点附近,仿真所得疑似放电区域与故障现场实际烧蚀痕迹相吻合;缓冲层外表面电势受波纹护套影响较大,越靠近接触点电势越小,缓冲层内表面电势基本未受波纹护套结构的影响;金属波纹护套节距越小、压纹深度越大,空气间隙电场越大。  相似文献   

16.
高压电缆绝缘屏蔽烧蚀击穿是导致电缆故障频发的重要原因。为研究电缆绝缘屏蔽烧蚀机理,设计了110 kV电缆电-热协同试验平台,测试分析了不同电压下试验回路电流的变化规律,并对不同烧蚀时间下绝缘屏蔽的烧蚀损伤程度进行对比分析。结果表明:不同试验电压下试验回路电流存在明显差异。试验电压低于50 V时,电流增长缓慢趋近于零;试验电压高于50 V时,电流增加明显,更利于观察试验现象。绝缘屏蔽表面烧蚀面积和深度随烧蚀时间的延长而增加,在试验电压为120 V下持续放电720 h时,绝缘屏蔽层烧蚀面积和深度分别达到40 mm~2和1.8 mm。最后建立了电缆本体局部放电模型,发现绝缘屏蔽与铝护套间的气隙是导致绝缘屏蔽烧蚀击穿的重要原因,并对如何降低电势差提出了改进措施,有利于延长电缆使用寿命和提高运行可靠性。  相似文献   

17.
对高压电缆金属护层悬浮电压进行简化计算,并针对高压电缆接地悬浮缺陷搭建了状态仿真平台,构建了直接接地箱缺陷及铝护套接地缺陷,在此基础上开展了典型缺陷在不同工况下长时间状态量变化规律的研究。结果表明:运行中110 kV单芯电缆金属护层两端不接地时的悬浮电压理论计算值可达4.64 k V(外护层良好接地)或57.81 kV(外护层非良好接地);直接接地箱缺陷及铝护套接地缺陷下金属护层接触电压会异常升高,且随试验电压成比例上升;不同试验电流下缺陷段电缆的接地电流和接触电压无明显变化,温升不明显;铝护套接地不良形成较小气隙时,高频电流传感器可检测出明显局放信号,且局放信号强度随试验电压升高而增大。  相似文献   

18.
高压电缆缓冲层烧蚀故障是近年来频发的电缆故障类型,然而目前的烧蚀缺陷检测手段难以满足存量电缆的检测需求。本文首次研究了基于铝护套内表面粗糙度的高压电缆缓冲层烧蚀缺陷的超声检测方法。首先,开展了潮湿条件下的缓冲层烧蚀模拟实验,并对烧蚀后的铝片开展了激光共聚焦显微镜测试以及电化学阻抗谱分析,发现随着烧蚀时间的增加,铝片的表面粗糙度逐渐增大,同时铝片表面的腐蚀程度逐渐加深,对应的缓冲层烧蚀缺陷逐渐加重,表明铝片的表面粗糙度与潮湿条件下缓冲层的烧蚀程度存在关联。其次,对烧蚀后的铝片开展了超声检测实验,并通过相邻超声回波信号的幅值比推算出了铝片腐蚀面的粗糙度,与实验测得的粗糙度具有相同的变化趋势。本文结果表明超声检测可用于检测缓冲层烧蚀缺陷的严重程度,为高压电缆缓冲层烧蚀缺陷超声检测方法的应用奠定了研究基础。  相似文献   

19.
高压电缆缓冲层材料及结构特性研究   总被引:1,自引:0,他引:1  
根据近些年行业的报道,运行多年的高压电缆,缓冲层及绝缘屏蔽表面与金属护套波谷接触部位存在"烧蚀"和"白斑"的现象,对高压电缆用缓冲层材料及几种典型高压电缆缓冲层结构的特性进行了研究,通过模拟试验再现"烧蚀"和"白斑"的形成,并提出了改进建议。  相似文献   

20.
外界压力是影响高压电缆缓冲层烧蚀故障发展的重要因素。实际电缆的敷设条件以及缆芯重力会造成缓冲层受力不均匀,然而该不均匀性对缓冲层烧蚀故障发展过程的影响目前尚不明确。本文搭建了缓冲层不均匀烧蚀模拟实验平台,分别研究了干燥与潮湿条件下局部受力不均对缓冲层烧蚀发展过程的影响。然后结合缓冲层的局部体积电导率变化、微观形貌特征以及烧蚀产物成分,分析了受力不均匀性对烧蚀故障发展过程的影响机理。结果表明:在干燥条件下,缓冲层的电流密度随烧蚀时间逐渐衰减,受力集中部位的电流密度衰减速率更快;而在潮湿条件下,缓冲层的电流密度在烧蚀初期先急剧增加,随后迅速下降,呈现出电流密度尖峰特征,受力集中部位的电流密度尖峰的峰值更大,且尖峰内电流密度的变化速率更快。分析认为,局部受力集中会增大缓冲层半导电纤维之间的有效接触面积,导致电流密度上升,加剧烧蚀过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号