首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Coarse particles are more difficult to float. One of the factors that contributes to poor floatability is the stability of froth. The froth formed in industrial flotation cells is typically not strong enough to provide adequate support for coarse and dense particles. The present study investigates how the presence of hydrophobic submicron particles at low concentration increases the recovery of relatively coarse particles through improvement in the froth stability. Silica particles with d80 of approximately 230 μm were floated in a laboratory mechanical flotation cell in a collector-free environment in the presence of poly(propylene glycol) 425 as a frothing agent. The hydrophobicity of the feed particles was modified through an esterification process with different alcohols ranging from 3 to 8 hydrocarbon groups to form a coating of intermediate hydrophobicity. Hydrophobised silica submicron particles of 300 nm in size were added to the flotation cell at 0.01 and 0.1 wt% concentration. The effect of electrolyte, sodium chloride, in the concentration range 10−5–10−1 M on the recovery of coarse particles was also investigated. For the feed employed, 1-butanol was found to provide relatively good flotation properties with a possibility for improvement by stabilising the froth phase. Both additives slightly stabilised the froth phase, which resulted in an increase in the maximum recovery of up to approximately 8%. It appeared that the additives had no significant effect on the first-order flotation rate constant.  相似文献   

2.
粗细粒级差异化给矿对浮选柱选别性能的影响   总被引:1,自引:1,他引:0  
粗细粒级矿物具有不同的浮选特性,浮选柱主要应用于精选作业的细粒级矿物分选,对粗颗粒矿物回收率较低,限制了浮选柱的应用。在泡沫层分选理论的基础上,以纯石英矿物(纯度大于99%)为代表矿样,将其分成150~280μm和-15μm粗细粒级两个组分,采用Ф100 mm×2 000 mm浮选柱开展试验考察粗细粒级差异化给矿对选别性能的影响。在一个试验中将粗细粒级矿物混合给入浮选柱泡沫层之下进行常规浮选,在另一个试验中将粗细粒级矿物差异化给入浮选柱泡沫层之上和泡沫层以下分别进行泡沫层分选和常规浮选。试验对比结果表明,粗细粒级差异化给矿提高了浮选柱精矿回收率,对粗颗粒矿物回收效果提升更为显著。  相似文献   

3.
《Minerals Engineering》1999,12(7):721-731
Flotation processes occurring in the bulk and froth phases have a characteristic influence on the structural features and dynamics of the flotation froth. It is recognized that the structure and texture of a mineral froth is a good indicator of flotation separation performance. The surface froth feature and dynamics are presented by three features extracted from the digitized images of the froths, i.e. SNE, a rough indication of the average bubble size of the froth, froth stability and the average grey level of the froth, an indication of mineral loading. Particle size is an important parameter in flotation operation. Nowadays, particle size is often measured and controlled in flotation concentrators. In this study the dependence of the froth structures on the particle size variation was investigated on the batch flotation of a sulfide ore from the Merensky reef in South Africa, and the size by size recovery curves were studied as well. In general medium particles produced bubbles smaller than those observed in the presence of fine and coarse particles, and the recovery rates were larger. Entrainment was a contributory mechanism to the recovery of fine particles. The fluctuation of flotation indices on the particle size change can be diagnosed and predicted by the froth structures change with a high degree of accuracy.  相似文献   

4.
The effect of hydrophobic and magnetic plastic particles having a contact angle of around 83° on flotation performance was evaluated using coal particles of varying degrees of floatability. The magnetic plastic material were recovered by a low intensity magnetic separator and recycled back to the flotation feed for re-use. Flotation rate tests conducted on coal using a conventional cell proved that combustible recovery and flotation rate were significantly enhanced with the addition of the plastic particles, especially for difficult-to-float coals, which was corroborated by flotation column tests. Carrying capacity and particle size-by-size flotation tests further showed that the magnetic plastic particles preferentially increased the recovery of coarse particles by as much as 35 absolute percentage points due to froth stabilization which reduced the selective detachment of coarse and/or weakly hydrophobic particles. The enhanced flotation recovery was attributed to the influence on liquid drainage rate in the froth zone, froth stability, bubble coalescence and flotation rates.  相似文献   

5.
This research addresses two important issues confronting coal flotation plants in Australia, the use of saline water and the processing of clayey coal. Two coal samples obtained from BHP Billiton Mitsubishi Alliance (BMA) and Xstrata were tested to represent coarse coal flotation and fine coal flotation, respectively. Saline water with low, medium and high ionic strengths and individual electrolytes encountered in the flotation plants were used. It was found that saline water had a more pronounced effect on fine coal flotation than coarse coal flotation despite similar mineral compositions and clay mineral types present. Although saline water increased froth stability in both fine and coarse coal flotation, coal particle aggregation only occurred between fine coal particles resulting in an increased recovery of coal particles as well as the entrapment of fine gangue minerals.  相似文献   

6.
In batch flotation tests conducted on ores from the Merensky reef, changes in froth stability invariably occur with variations in the reagent suite. The main reagents are collectors (primary and secondary), activators, depressants and frothers. Since the particles entering and leaving the froth in a batch flotation system are continuously changing, the stability of the froth can vary. Under these conditions the simplest measure of froth stability is the measure of water recovery at a fixed froth height. The batch flotation system developed at UCT allows for the separation of gangue which is entrained relative to gangue which is floated. It has been found that the presence of naturally floatable gangue (NFG) leads to froth stabilisation, whereas the presence of hydrophobic sulfide minerals may lead to destabilisation of the froth depending on the hydrophobicity (contact angle) of the sulfide minerals. This can vary with ore type since particle shape and amount of particles present can influence the extent of destabilisation. At low depressant dosages sodium isobutyl xanthate (SIBX) always results in lower froth stability than sodium ethyl xanthate (SEX). The frothing nature of dithiophosphate leads to increased froth stability and the addition of copper sulfate results in destabilised froths. Increasing depressant dosage reduces the stabilising influence of NFG and the depressant type (guar gum or CMC) also affects froth stability. Frother can be used in an attempt to overcome the destabilising effects of high depressant dosage. This work examines the effect of variations in the reagent suite and uses water recovered at a fixed froth height as an indication of froth stability in order to analyse these effects on the recovery of sulfide minerals, floatable gangue and entrained gangue.  相似文献   

7.
《Minerals Engineering》2003,16(10):941-949
About 70% of the UG2 reef consists of the gangue mineral chromite (FeO · Cr2O3). In the processing of UG2 ore by flotation for the recovery of platinum group elements (PGEs) the presence of chromite in the concentrates can cause serious downstream processing problems and a grade of less than 3% Cr2O3 is sought. This constrains operating procedures and compromises optimum recovery of the PGEs.In this study, the influence of the froth phase on the recovery of chromite was investigated by changing both frother type and dosage and froth height in batch scale flotation tests. The results obtained showed that it was possible to obtain concentrates with less than 3% Cr2O3 content by increasing the froth height, allowing for better drainage of both entrained gangue particles and coarse particles with low hydrophobicity. At a 3 cm froth height, very low water and mass recovery were obtained and thus low entrainment. Nevertheless a small amount of chromite particles coarser than 45 μm was persistently recovered which may be attributed to the true flotation of these particles.The mechanism of chromite recovery was discussed on the basis of the difference in the appearance of the froth structure and water recovery.  相似文献   

8.
《Minerals Engineering》2006,19(6-8):774-783
This paper deals with two separate case studies investigating the froth phase performance and characterisation of two industrial rougher/scavenger flotation circuits. Froth phase performance was quantified using a mass balance approach to estimate froth zone recovery. Measured characteristics of the froth phase included frother solution concentration determined by gas chromatography, and the time taken for an equilibrium froth sample to decay to one-half of its original froth height. The latter measurement is referred to as the ‘froth half-life’ and is strongly linked to froth stability. Special methods and techniques developed to preserve frother in solution and to measure froth half-life are briefly described. The frother type in the first case study was a mixture of straight and branched alcohols, whilst the frother type in the second case study was a mixture of alcohols, aldehydes and triethoxybutane. The first case study focussed on a flotation circuit treating a low grade ore containing only a small fraction of floatable copper sulphide minerals, while the second case study focussed on a flotation circuit treating a higher grade complex sulphide ore containing significant quantities of chalcopyrite, galena, sphalerite and pyrite.It was found that froth zone recovery of valuable mineral generally decreased down-the-bank of the two industrial rougher/scavenger circuits. Moreover, decreases in froth zone recovery significantly limit the overall cell recovery of valuable mineral achievable from the plant scavenger cells. However, the decrease in froth zone recovery could not be linked to the removal of frother from the pulp solution to the concentrate product in the preceding rougher flotation stages. Measurements of residual frother in solution suggested that, approximately, only 5–10% of the added frother was removed into the rougher/scavenger concentrate, with the remainder appearing in the scavenger tailings. This finding suggested there was apparently adequate frother in solution in the scavenger stages.There was, however, a correlation to the froth half-life, with the froth half-life also generally decreasing down-the-bank. A simple, empirical model, based on the froth half-life and froth residence time of gas, is proposed here to predict froth zone recovery. Further, it is proposed that the froth stability, as measured by the froth half-life, is strongly linked to the presence of particles in the froth, with poorly mineralised scavenger froth characterised by a short half-life and, potentially, a low froth zone recovery. The importance of particles on froth stability was confirmed in separately conducted laboratory experiments. These experiments also demonstrated the wide variation in froth stability behaviour between different frother types.  相似文献   

9.
《Minerals Engineering》2003,16(10):975-982
The improved selectivity between particles of varying degrees of hydrophobicity in flotation froths has been well documented in literature, especially in the deep froths utilized in flotation columns. The phenomenon is believed to be due to the selective detachment process whereby the least hydrophobic particles are released from the bubble surface upon bubble coalescence. To quantify the selective detachment process, column flotation experiments were performed under various operating conditions that provided varying amounts of reflux between the froth and collection zones. Entrainment was eliminated by the use of relatively coarse 250 × 75 micron material. The flotation column incorporated the ability to provide instantaneous stoppage of the process streams and separation between the collection and froth zones after ensuring steady-state operation of the column. The samples collected from the two zones and process streams were evaluated to quantify the flotation rate distribution of the particles comprising each sample. The flotation rate was used as an indicator of the degree of hydrophobicity and thus a relative measure of the binding force between the particle and bubble in the froth zone. The flotation rate data was used as input into well known flotation models to obtain the froth zone recovery rate and the quantity of material that refluxes between the collection and froth zones.  相似文献   

10.
细粒矿物浮选过程中,亲水的脉石矿物泡沫夹带进入精矿中,导致精矿品位降低。揭示泡沫排液及排脉石过程中的相关理论,可以为浮选泡沫结构及泡沫夹带行为的研究提供理论基础。浮选过程中的脉石泡沫夹带是一种普遍现象,脉石夹带回收率与精矿水回收率呈线性关系;两相泡沫排液受重力、毛细作用力(表面张力)、黏滞力控制,不同含液率的两相泡沫排液遵循不同的排液公式;三相泡沫的排脉石过程遵循对流—扩散模型,脉石的夹带回收率受三相泡沫排液速率及脉石颗粒浓度分布控制。浮选操作条件、亲水脉石的特性、矿浆特性以及泡沫结构是影响泡沫夹带的主要因素;优化浮选操作条件,改变浮选流程结构和改变药剂制度可以有效降低脉石的泡沫夹带,提高浮选选择性。未来,还需开发表征浮选三相泡沫特征的方法、装置或仪器,三相泡沫的结构及形态、疏水矿物颗粒与亲水脉石颗粒在泡沫中的运动路径及分布规律、浮选三相泡沫排液及排脉石的数学模型还需要进一步的细致研究。另外,降低脉石泡沫夹带的技术对于部分浮选体系虽有一定效果,但脉石的泡沫夹带尚难以消除,须开发一些革命性的技术。  相似文献   

11.
Water recycling poses a challenge to mineral concentrators. The quality of process water is often uncontrollable and varies across operations due to changes in the amount of total dissolved solids, the ionic strength and pH. A change in ionic strength could affect the flotation process by affecting the surface reactions occurring at the mineral surface and also the stability of the froth. This study investigated the effect of ionic strength on the water recovery, bubble size, foam height and foam collapse time in a 2-phase flotation system in an attempt to predict the overall foam stability behaviour which is believed to be directly proportional to froth stability. Batch flotation results showed a tremendous increase in water recovery with increasing ionic strength. The bubble size decreased quite significantly with an increase in ionic strength. Foam height and collapse time increased with increasing ionic strength. These findings suggest that the ionic strength of plant water plays an important role in froth stability.  相似文献   

12.
柴油对浮选泡沫稳定性影响的试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
李明  徐梦迪  晋伟  邢耀文  桂夏辉 《煤炭学报》2019,44(6):1876-1882
泡沫稳定性是影响浮选过程效率的重要参数之一。为了探究柴油对浮选泡沫稳定性的影响,借助泡沫扫描分析仪(FOAMSCAN)研究了气液两相体系下不同浓度的柴油与体积分数20×10-6的甲基异丁基甲醇(MIBC)混合溶液的起泡能力与泡沫稳定性,采用动态液膜分析装置分析了泡沫间液膜的最终状态,进一步明晰了柴油对泡沫稳定性的影响机制,并通过细粒煤浮选及气液固三相泡沫稳定性试验探讨了柴油对实际浮选体系泡沫性质及浮选效果的影响。气液两相体系泡沫稳定性试验表明,随着柴油浓度的增加,溶液起泡能力和泡沫稳定性逐渐降低。泡沫间液膜测试结果说明,柴油浓度加大使得泡沫间液膜由最终的平衡状态转为破裂状态,液膜稳定性变差,气泡更容易兼并甚至破裂,该结论与气液两相泡沫稳定性试验结果保持一致。浮选结果表明,柴油用量较低时,随着柴油浓度增加,最大泡沫层高度和半衰期逐渐增大,浮选精煤产率也随之增大,这主要是由于柴油改善煤样表面疏水性以及细粒煤的稳泡作用所致;但当柴油用量增加到一定浓度后,最大泡沫层高度和泡沫半衰期减小,浮选精煤产率减小,一方面,柴油油滴进入泡沫间液膜中,在范德华力等力的驱使下,泡沫间的液膜逐渐薄化直至形成经典的油滴架桥现象,最终导致气泡兼并甚至破裂,另一方面,柴油油滴竞争吸附起泡剂分子,使得气液界面的起泡剂浓度降低,从而导致泡沫稳定性降低,柴油具有一定的消泡作用。  相似文献   

13.
《Minerals Engineering》2006,19(11):1191-1203
Entrainment in flotation can be considered as a two-step process, including the transfer of the suspended solids in the top of the pulp region just below the pulp–froth interface to the froth phase and the transfer of the entrained particles in the froth phase to the concentrate. Both steps have a strong classification characteristic. The degree of entrainment describes the classification effect of the drainage process in the froth phase. This paper briefly reviews two existing models of degree of entrainment. Experimental data were collected from an Outokumpu 3 m3 tank cell in the Xstrata Mt. Isa Mines copper concentrator. The data are fitted to the models and the effect of cell operating conditions including air rate and froth height on the degree of entrainment is examined on a size-by-size basis. It is found that there is a strong correlation between the entrainment and the water recovery, which is close to linear for the fines. The degree of entrainment decreases with increase in particle size. Within the normal range of cell operating conditions, few particles coarser than 50 μm are recovered by entrainment. In general, the degree of entrainment increases with increase in the air rate and decreases with increase in the froth height. Air rate and froth height strongly interact with each other and affect the entrainment process mainly via changes in the froth retention time, the froth structure and froth properties. As a result, other mechanisms such as entrapment may become important in recovering the coarse entrained particles.  相似文献   

14.
分别将0.074 mm粒度以下的低密度(-1.4 g/cm3)、中间密度(1.4~1.8 g/cm3)和高密度(+1.8 g/cm3)细粒煤泥掺入到粗粒煤泥中进行浮选试验,研究不同密度细粒煤泥对粗粒煤泥浮选产率的影响,通过AFM测定低密度、高密度细粒煤泥颗粒与低灰粗颗粒煤之间的作用力,采用SEM观察浮选精煤、尾煤中粗颗粒煤的表面形貌,结合EDLVO理论对其影响机理进行了探讨。结果表明:中间密度细粒煤泥对粗粒煤泥浮选的抑制作用最大,低密度细粒煤泥次之,高密度细粒煤泥最小;粗粒煤泥的粒度越大,其浮选产率受中间密度细粒煤泥的影响越严重;AFM测定的作用力-距离曲线证实了疏水作用力的存在,颗粒疏水性越强,颗粒间的疏水力越大;通过SEM观察发现中间密度细粒煤泥在粗粒煤泥表面的罩盖现象显著。  相似文献   

15.
Increasing the upper size limit of coarse particle flotation has been a long-standing challenge in the minerals processing industry. The HydroFloat separator, an air-assisted fluidised-bed separator, has been used in this study to float 250–1180 μm sphalerite particles in batch flotation tests and compared to results achieved utilizing a laboratory-scale conventional Denver cell. The quiescent environment within the HydroFloat cell significantly reduces the turbulent energy dissipation within the collection zone, hence decreasing the detachment of particles from bubbles during flotation. Three operating parameters including bed-level, superficial water and gas rates have been studied, and their effect on the flotation of coarse sphalerite particles is reported. It is shown that coarse sphalerite recovery increases with increasing bed-level, superficial water and gas flow rates. However, there are thresholds for each operating parameter above which recovery starts to decrease. A comparison of recovery with a conventional Denver flotation cell indicates that the HydroFloat separator vastly outperforms the conventional flotation machine for the very coarse particles (+425 μm), and this is mainly attributable to the absence of turbulence and the minimization of a froth zone, both of which are detrimental to coarse particle flotation.  相似文献   

16.
Dissolved air flotation (DAF) is a technique used extensively for separating fine particles in water and wastewater treatment, but, unfortunately, its use is still limited for froth flotation of minerals. This appear to be due to the very low lifting power of the microbubbles (40–70 μm) and low airflow rate because of the low solubility of air in water. Thus, the efficiency of DAF in treating mineral particles has shown to be poor and as a solid/liquid separation technology is limited to slurries with no more than 3% solids. This work presents results showing (measuring) the limits of DAF as a function of particle size distribution, solids content and air superficial velocity. Interestingly, the microbubbles were found to be not selective with respect to particle size, floating both fine and coarse particles, which is most likely due to the existence of several mechanisms acting on the flotation of particles by these minute bubbles.  相似文献   

17.
《Minerals Engineering》2007,20(7):716-721
There appears to be several mechanisms affecting the recovery of coarse KCl particles as they flow through the flotation circuit of the Taquari Vassouras mine (Companhia Vale do Rio Doce; CVRD), Aracaju, Brazil in the presence of continually increasing concentrations of carnallite. The increase in carnallite assists in the deposition of fine NaCl and KCl crystals on the surface of the coarse KCl particles. The effect seems to be a slight net improvement in the surface hydrophobicity and therefore flotation recovery of the coarse KCl particles. As the concentration of Mg2+ ions increase, the precipitation of fine crystals of NaCl and KCl starts to increase. These NaCl crystals appear to have fine inclusions of KCl on the surface (and vice versa) which appear to attract collector, thus reducing hydrophobicity and flotation recovery of the coarse KCl feed. It is at this stage that the removal of fine precipitates appears to become critical in order to provide enough collector coverage of the coarse KCl particles to keep them floating.  相似文献   

18.
Recent research progress in hard rock mineral flotation shows that froth stability can be represented by air recovery, which is defined as the fraction of air entering a flotation cell that overflows the weir in unburst bubbles, and that air recovery has strong correlation with the separation performance of mineral flotation. Yet no experimental work on air recovery has been devoted to coal flotation. This paper studies air recovery in coal flotation and examines the links between air recovery, froth stability and coal flotation performance. A series of experiments were conducted using a laboratory-scale mechanical flotation cell at various methyl isobutyl carbinol (MIBC) concentrations and aeration rates. It was found that air recovery has a strong correlation with dynamic froth stability determined by measuring the maximum froth height in a non-overflowing froth column. At a fixed aeration rate (hydrodynamic condition) and various MIBC concentrations, a strong correlation between air recovery and coal flotation performance was also observed.  相似文献   

19.
《Minerals Engineering》1999,12(9):1001-1019
This paper is aimed at producing a conceptual model for gold flotation based on the discussion of a number of experimental results where the behaviour of free and refractory gold has been studied under different chemical and physical conditions. A review of the literature suggests that there have been numerous studies on the flotation of free gold particles and refractory sulphides, but these investigations have typically focused on the individual flotation behaviour of each gold bearing species in synthetic mixtures and not when they are present together in “real” ores in the same pulp. The model discussed here shows that the flotation of refractory gold follows a similar trend to the recovery of refractory pyrite and pyrrhotite and is mainly affected by chemical conditions in the pulp such as redox potential, aeration conditions, copper activation, reagent synergism and galvanic interaction. Refractory gold is usually recovered by true flotation that is hydrophobic particle-bubble attachment, unless under certain conditions the physical transport of water and gangue provides a washing effect and detaches some of the sulphide material from the air bubbles. The flotation recovery of free gold is largely affected by physical constraints like the shape and size of the particles, the degree of water and gangue transport to the froth, the stability of the froth, and the extent of bubble loading of sulphide particles which can provide a barrier towards the hydrophobic bubble attachment of free gold. In each individual study the results suggest that the recovery of free gold follows a proportional trend with regard to water and gangue recovery. However, there is an inverse relationship between the true flotation of free and refractory gold due to the fact that free gold particles cannot attach to air bubbles properly in the presence of physical barriers.  相似文献   

20.
《Minerals Engineering》2007,20(3):241-251
Organic solvents were evaluated through the determination of froth volume and bubble collapse rate in a froth column meter under various solvent dosages and aeration rate levels. There is a non-linear relationship between the froth volume and the gas flow rate for polyglycol ether type solvents. It is inappropriate to apply the concept of linearity retention time to describe the frothing characteristics of polyglycol ethers. Two new parameters are derived to characterize the foam stability and non-persistency of the frothers. The new parameters are initial dynamic froth index (IDFI) and initial dynamic froth collapse rate (IDCR). IDFI represents the froth volume formation properties, and can be used to relate to the ultimate recovery, Rm, and the flotation rate constant, K. IDCR describes the non-persistency of the froth, and can be used to relate to the quality of flotation concentrates. IDFI value depends on chemical structure and molecular weight of a solvent. Increasing solvent molecular weight and number of hydrophobic groups increases the IDFI value. Both ultimate recovery and flotation rate constant can be maintained at a desirable level, if the solvent dosage is applied in the amount to give the same product value of IDFI and solvent dosage. The selection of potential frothers from solvents tested is made by using IDFI and IDCR and comparing with laboratory fine coal flotation performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号