首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Novel Eu3+‐doped transparent oxyfluoride glass‐ceramics containing BaLuF5 nanocrystals were successfully fabricated by melt‐quenching technique for the first time. Analyses of XRD patterns prove that the new precipitated glass‐ceramics are crystallized in cubic BaLuF5 based on isostructural BaGdF5. Intense red emissions observed in glass ceramics are attributed to the enrichment of Eu3+ ions into BaLuF5 nanocrystals. Besides, obvious stark splitting emissions, low forced electric dipole 5D07F2 transition, and long decay lifetimes of Eu3+ ions also evidence the partition of Eu3+ ions into BaLuF5 nanocrystals with low phonon energy. Such transparent material may find applications in photonics.  相似文献   

2.
Eu3+‐doped transparent phosphate precursor glasses and glass‐ceramics containing TbPO4 nanocrystals were successfully fabricated by a conventional high‐temperature melt‐quenching technique for the first time. The formation of TbPO4 nanocrystals was identified through X‐ray diffraction, transmission electron microscopy, high‐resolution transmission electron microscopy, selected‐area electron diffraction, and photoluminescence emission spectra. The obvious Stark splitting of 5D07FJ (J = 1, 2, 4) transitions of Eu3+and the increase of internal quantum efficiency indicate the incorporation of Eu3+ into TbPO4 nanocrystals. Energy transfer from Tb3+ ions to Eu3+ ions was investigated using excitation and emission spectra at room temperature. The glass‐ceramics obtained have more efficient Tb3+ to Eu3+ energy transfer than the glass, and so serve as good hosts for luminescent materials.  相似文献   

3.
《Ceramics International》2016,42(11):13086-13090
Tb3+/Eu3+ co-doped glass ceramics containing NaCaPO4 nanocrystals were successfully synthesized via traditional melt-quenching route with further heat-treatment and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence spectroscopy. The energy transfer process of Tb3+→Eu3+ was confirmed by excitation and emission spectra and luminescence decay curves, and the energy transfer efficiency was also estimated. The results indicated that the efficient emission of Eu3+ was sensitized by Tb3+ under the excitation of 378 nm, realizing tunable emission in the transparent bulk glass ceramics containing NaCaPO4 nanocrystals. Furthermore, optical thermometry was achieved by the fluorescence intensity ratio between Tb3+:5D47F5 (~542 nm) and Eu3+:5D07F2 (~612 nm). The maximum absolute sensitivity of 4.55% K−1 at 293 K and the maximal relative sensitivity of 0.66% K−1 at T=573 K for Tb3+/Eu3+ co-doped transparent NaCaPO4 glass ceramic are obtained. It is expected that the investigated transparent NaCaPO4 glass ceramics doped with Tb3+/Eu3+ have prospective applications in display technology and optical thermometry.  相似文献   

4.
Transparent glass‐ceramics containing Ce3+: Y3Al5O12 phosphors and Eu3+ ions were successfully fabricated by a low‐temperature co‐sintering technique to explore their potential application in white light‐emitting diodes (WLEDs). Microstructure of the sample was studied using a scanning electron microscope equipped with an energy dispersive X‐ray spectroscopy. The impact of co‐sintering temperature, Ce3+: Y3Al5O12 crystal content and Eu3+ doping content on optical properties of glass‐ceramics were systematically studied by emission, excitation spectra, and decay curves. Notably, the spatial separation of these two different activators in the present glass‐ceramics, where Ce3+ ions located in YAG crystalline phase while the Eu3+ ones stayed in glass matrix, is advantageous to the realization of both intense yellow emission assigned to Ce3+: 5d→4f transition and red luminescence originating from Eu3+: 4f→4f transitions. As a result, the quantum yield of the glass‐ceramic reached as high as 93%, and the constructed WLEDs exhibited an optimal luminous efficacy of 122 lm/W, correlated color temperature of 6532 K and color rendering index of 75.  相似文献   

5.
Er3+ ions‐doped germano‐gallate oxyfluoride glass‐ceramic containing BaF2 nanocrystals was prepared through conventional melt quenching and subsequent thermal treatment method. X‐ray diffraction patterns and transmission electron microscope images confirmed the formation of BaF2 nanocrystals in glass‐ceramics. Preferential incorporation of Er3+ ions into the BaF2 nanocrystals were confirmed by the absorption spectra and emission spectra, and enhanced upconversion emission and infrared emission were observed. Relatively high transmittance in the mid‐infrared region indicated great potential of this germano‐gallate oxyfluoride glass‐ceramics as host materials for the efficient mid‐infrared emission from rare‐earth ions.  相似文献   

6.
Eu‐doped transparent oxyfluoride aluminosilicate glass was prepared by controlling with Al codoping of melt‐quenched glass fabricated under air atmosphere. In the presence of Al input, the photoluminescence emission spectra under 393 nm excitation shows a blue shift by adjusting the ratio of Eu3+ and Eu2+. After heat treatment of glass, the ratio of Eu3+ and Eu2+ of luminescence emission were changed by controlling treatment temperature. The PL intensity of Eu3+ and Eu2+ ions in the glass‐ceramics (GC) was much stronger than in the precursor glass (PG). The possible mechanism responsible for color tuneability of the ratio of Eu3+ and Eu2+ doped was discussed.  相似文献   

7.
Novel Ho3+ doped highly transparent NaYbF4 glass‐ceramics were successfully fabricated by melt‐quenching technique. Their structural and luminescent properties were systemically investigated by XRD, TEM, absorption spectra, upconversion spectra, and lifetime measurements. Excited by 980‐nm laser, samples exhibit characteristic emissions of Ho3+. Impressively, the luminescent color can be tuned easily from red for precursor glass to green for glass‐ceramics. Such novel phenomenon was elaborately investigated and is owing to the reduced multiphonon nonradiative relaxation and enhanced cross‐relaxation of Ho3+ in NaYbF4 nanocrystals after crystallization. Our results indicate that NaYbF4 transparent glass‐ceramics is an excellent host for upconversion.  相似文献   

8.
Lead tungstate PbWO4 nanocrystals in transparent lead borate glass‐ceramics containing Er3+ ions were fabricated. Luminescence spectra at about 1530 nm due to main 4I13/24I15/2 laser transition of Er3+ ions were examined for glass samples before and after heat treatment. Near‐infrared luminescence of Er3+ ions in glass‐ceramics is enhanced and long‐lived in comparison to precursor glasses. It suggests that the Er3+ ions are partially incorporated into PbWO4 crystalline phase.  相似文献   

9.
Eu3+‐doped red‐emitting ceramics of Eu3+‐doped La3Mg2NbO9 were prepared via typical solid state. X‐ray diffraction and scanning electron microscope were utilized to characterize the ceramics. The photoluminescence excitation and emission spectra, the fluorescence decay curves, and color coordinates were investigated. The concentration quenching of the samples were discussed as well. The microstructures of the ceramics were discussed according to the spectral properties of probe ions of Eu3+, for example, substitution sites for Eu3+, inhomogeneous broadening and splitting of the emission bands, nonexponential decay, 5D07F0 emission transition, distorted symmetry sites, etc. The crystal structure of La3Mg2NbO9 is heavily distorted due to the mixed occupation of Mg and Nb on B sites. Eu3+ ions only substitute La3+ sites and Eu3+ ions (or rare‐earth ions) are arranged in the heavily disordered environments over the whole structure in La3Mg2NbO9.  相似文献   

10.
The Er3+ concentration dependencies of upconversion luminescence in oxy‐fluoride glass and glass‐ceramics containing PbF2 nanocrystals were investigated. Strong red emission from the 4F9/2 → 4I15/2 transition was observed with the addition of ~0.8 mol% Er3+ ions, whereas ~10 mol% of Er3+ is required to achieve such emission in several other crystalline hosts. Intensities of red emission further increased with the formation of nanocrystals through heat treatment. The Er3+ ions enriched in glass and segregated preferentially inside the PbF2 nanocrystals that decreased the distance among Er3+ ions and thereby facilitated energy transfer.  相似文献   

11.
Four Cr4+‐activated transparent glass‐ceramics containing different species of silicate nano‐crystals (Zn2SiO4, Mg2SiO4, Li2ZnSiO4, and Li2MgSiO4) were successfully prepared. Absorption spectra, photoluminescence spectra, lifetime decay curves, and quantum yield of these transparent glass‐ceramics were measured. According to the crystal field strength of Cr4+‐incorporated tetrahedral sites, the broadband near‐infrared (NIR) luminescence of Cr4+ can be tailored from 1130 to 1350 nm and the lifetime of Cr4+ luminescence can be prolonged from 6 to 100 μs. Quantum yield in the transparent glass‐ceramics containing Li2ZnSiO4 nano‐crystals reached at 17%, which is the highest value of NIR luminescence in transition‐metal‐activated glass materials.  相似文献   

12.
Novel transparent oxyfluoride glass‐ceramics containing KYb2F7:Ho3+ nanocrystals were successfully elaborated by melt‐quenching technique with further thermal treatment for the first time. Their structural and luminescent properties were investigated systemically by XRD, HRTEM, absorption spectra, upconversion spectra, and lifetime measurements. Under 980 nm laser excitation, all samples exhibited characteristic emissions of Ho3+. Attractively, the upconversion emissions of Ho3+, especially green and near‐infrared emissions, were enormously enhanced 190 times after crystallization. The incorporation of Ho3+ into KYb2F7 nanocrystals with lower phonon energy was responsible for this phenomenon. Our research may enrich the understanding of fluoride‐nanocrystals‐based transparent oxyfluoride glass‐ceramics.  相似文献   

13.
In this work, silica powders and transparent glass‐ceramic materials containing LaF3:Eu3+ nanocrystals were synthesized using the low‐temperature sol‐gel technique. Prepared samples were characterized by TG/DSC analysis as well as X‐ray diffraction and IR spectroscopy. The transformation from liquid sols toward bulk powders and xerogels was also examined and analyzed. The optical behavior of prepared Eu3+‐doped sol‐gel samples were evaluated based on photoluminescence excitation (PLE: λem = 611 nm) and emission (PL: λexc = 393 nm, λexc = 397 nm) spectra as well as luminescence decay analysis. The series of luminescence lines located within reddish‐orange spectral scope were registered and identified as the intra‐configurational 4f6‐4f6 transitions originated from Eu3+ optically active ions (5D0 → 7FJ, J = 0‐4). Moreover, the R/O‐ratio was also calculated to estimate the symmetry in local framework around Eu3+ ions. The luminescence spectra and double‐exponential character of decay curves recorded for fabricated nanocrystalline sol‐gel samples (τ1(5D0) = 2.07 ms, τ2(5D0) = 8.07 ms and τ1(5D0) = 0.79 ms, τ2(5D0) = 9.76 ms for powders and glass‐ceramics, respectively) indicated the successful migration of optically active Eu3+ ions from amorphous silica framework to low phonon energy LaF3 nanocrystal phase.  相似文献   

14.
In this paper we report for the first time synthesis of Eu3+‐doped transparent glass‐ceramics (TGC) with BaBi2Ta2O9 (BBT) as the major crystal phase using the glass system SiO2–K2O–BaO–Bi2O3–Ta2O5 by melt quenching technique followed by controlled crystallization through ceramming heat treatment. DSC studies were conducted in order to determine a novel heat‐treatment protocol to attain transparent GCs by controlling crystal growth. The structural properties of the BBT GCs have been investigated using XRD, FE‐SEM, TEM and FTIR reflectance spectroscopy. Optical band gap energies of the glass‐ceramic samples were found to decrease with respect to the precursor glass. An increased intensity of emission along with increase in the average lifetime of Eu3+ was observed due to incorporation of Eu3+ ions into the low‐phonon energy BBT crystal site. The local field asymmetric ratios of all the samples were observed greater than unity. The dielectric constant (εr), dielectric loss, and dissipation factor values of both the base glass and ceramized samples were found to decrease with increase in frequency.  相似文献   

15.
The precursor glass in the ZnO–Al2O3–B2O3–SiO2 (ZABS) system doped with Eu2O3 was prepared by the melt‐quench technique. The transparent willemite, Zn2SiO4 (ZS) glass–ceramic nanocomposites were derived from this precursor glass by a controlled crystallization process. The formation of willemite crystal phase, size, and morphology with increase in heat‐treatment time was examined by X‐ray diffraction (XRD) and field‐emission scanning electron microscopy (FESEM) techniques. The average calculated crystallite size obtained from XRD is found to be in the range 18–70 nm whereas the grain size observed in FESEM is 50–250 nm. The refractive index value is decreased with increase in heat‐treatment time which is caused by the partial replacement of ZnO4 units of ZS nanocrystals by AlO4 units due to generation of vacancies. Fourier transform infrared (FTIR) reflection spectroscopy was used to evaluate its structural evolution. Vickers hardness study indicates marked improvement of hardness in the resultant glass‐ceramics compared with its precursor glass. The photoluminescence spectra of Eu3+ ions exhibit emission transitions of 5D07Fj (j = 0, 1, 2, 3, and 4) and its excitation spectra show an intense absorption band at 395 nm. These spectra reveal that the luminescence performance of the glass–ceramic nanocomposites is enhanced up to 17‐fold with the process of heat treatment. This enhancement is caused by partitioning of Eu3+ ions into glassy phase instead of into the willemite crystals with progress of heat treatment. Such luminescent glass–ceramic nanocomposites are expected to find potential applications in solid‐state red lasers, phosphors, and optical display systems.  相似文献   

16.
A luminescent Eu, Dy: SrAl2O4 glass‐ceramics with high transparency in the visible region was successfully synthesized using the frozen sorbet technique with the control of O2 partial pressure () for the oxidation of Eu2+ ions. The glass‐ceramics include Eu2+, Eu3+, and Dy3+ ions, and thus exhibits three characteristic types of emission bands, 4f–5d at around 520 nm (Eu2+ ions), 4f–4f at 610 nm (Eu3+ ions), and 480 nm (Dy3+ ions). The Eu, Dy: SrAl2O4 glass‐ceramics provide remarkable long‐persistent luminescence under dark condition. The glass‐ceramics also exhibits color‐changing luminescence in the visible region based on their remarkable light storage properties. The luminescent Eu, Dy: SrAl2O4 glass‐ceramics using the frozen sorbet technique with control of are promising materials for application in novel photonic and light storage materials.  相似文献   

17.
Eu3+‐doped cesium barium borate glass with the composition of Cs2O·2BaO·3B2O3 was prepared by the conventional melt quenching method. The glass‐ceramic sample was obtained from the re‐crystallization of the as‐made glass to change the amorphous glass into a crystalline host. This reduces the Eu3+ in glass to Eu2+ ions resulting in a yellow‐emitting phosphor of Eu2+‐activated CsBaB3O6. The samples were investigated by the XRD patterns and SEM micrograph, the optical absorption, the photoluminescence spectra, and decay curves. The as‐made glass has only Eu3+ centers. Under the excitation of blue or near‐UV light, Eu2+‐doped CsBaB3O6 presents yellow‐emitting color from the allowed inter‐configurational 4f–5d transition in the Eu2+ ions. The maximum absolute luminescence quantum efficiencies of Eu2+‐doped CsBaB3O6 phosphor was measured to be 47% excited at 430 nm light at 300 K. By taking into account the efficient excitation in blue wavelength region, this new phosphor could be a potential yellow‐emitting phosphor for an application in white light‐emitting diodes fabricated with blue chips.  相似文献   

18.
Transparent (Y0.98?xTb0.02Eux)2O3 (= 0–0.04) ceramics with color‐tailorable emission have been successfully fabricated by vacuum sintering at the relatively low temperature of 1700°C for 4 h. These ceramics have the in‐line transmittances of ~73%–76% at 613 nm, the wavelength of Eu3+ emission (the 5D07F2 transition). Thermodynamic calculation indicates that the Tb4+ ions in the starting oxide powder can essentially be reduced to Tb3+ under ~10?3 Pa (the pressure for vacuum sintering) when the temperature is above ~394°C. The photoluminescence excitation (PLE) spectra of the transparent (Y0.98?xTb0.02Eux)2O3 ceramics exhibit one spin‐forbidden (high‐spin, HS) band at ~323 nm and two spin‐allowed (low‐spin, LS) bands at ~303 and 281 nm. Improved emissions were observed for both Eu3+ and Tb3+ by varying the excitation wavelength from 270 to 323 nm, without notably changing the color coordinates of the whole emission. The transparent (Y0.98Tb0.02)2O3 ceramic exhibits the typical green emission of Tb3+ at 544 nm (the 5D47F5 transition). With increasing Eu3+ incorporation, the emission color of the (Y0.98?xTb0.02Eux)2O3 ceramics can be precisely tailored from yellowish‐green to reddish‐orange via the effective energy transfer from Tb3+ to Eu3+ under the excitation with the peak wavelength of the HS band. At the maximum Eu3+ emission intensity (= 0.02), the ceramic shows a high energy‐transfer efficiency of ~85.3%. The fluorescence lifetimes of both the 544 nm Tb3+ and 613 nm Eu3+ emissions were found to decrease with increasing Eu3+ concentration.  相似文献   

19.
The influence of LaF3 on the crystallization behavior and luminescence of Eu3+ ions in the oxyfluoride borosilicate glass ceramics was investigated in details. Differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) results indicated that the addition of LaF3 decreased the glass transition temperature and promoted the crystallization of BaF2 nanocrystals, which distributed homogeneously in the glassy matrix. A reduction of the lattice parameters of BaF2 nanocrystals, the obvious Stark splitting of emission peaks and long fluorescence lifetime evidenced the incorporation of Eu3+ and La3+ into the BaF2 lattice. Furthermore, experimental results indicated the distribution of Eu3+ ions in the oxyfluoride glass ceramics may be modified by the addition of LaF3 content.  相似文献   

20.
Cr3+–Yb3+ codoped transparent glass‐ceramics containing Y3Al5O12 nanocrystals were prepared by heat treatment of as‐prepared glass sample and characterized by X‐ray diffraction and transmission electron microscopy. The efficient energy transfer from Cr3+ to Yb3+ ions through multi‐phonon‐assisted process was confirmed by the luminescence spectrum and fluorescent lifetime measurements. When excited by the lights from a solar simulator in the wavelength region of 400–800 nm, greatly enhanced near‐infrared emission around 1 μm was achieved from Cr3+–Yb3+ codoped glass ceramic compared with that from as‐prepared glass and Ce3+–Yb3+ codoped glass ceramic. These results demonstrate that the Cr3+–Yb3+ codoped glass ceramic is a promising material for enhancement of the efficiency of solar energy utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号