首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A series of Ce-Fe-Zr-O(x)/MgO(x denotes the mass fraction of Ce-Fe-Zr-O,x=10%,15%,20%,25%,30%) complex oxide oxygen carriers for selective oxidation of methane to synthesis gas were prepared by the co-precipitation method.The catalysts were characterized by means of X-ray diffraction and H2-TPR.The XRD measurements showed that MgFeO4 particles were formed and Fe2O3 particles well dispersed on the oxygen carriers.The reactions between methane diluted by argon(10% CH4) and oxygen carriers were investigated.Suitable content of CeO2/Fe2O3/ZrO2 mixed oxides could promote the reaction between methane and oxygen carriers.There are mainly two kinds of oxygen of carriers:surface lattice oxygen which had higher activity but lower selectivity,and bulk lattice oxygen which had lower activity but higher selectivity.Among all the catalysts,Ce-Fe-Zr-O(20%)/MgO exhibited the best catalytic performance.The conversion of the methane was above 56%,and the selectivity of the H2 and CO were both above 93%,the ratio of H2/CO was stable and approached to 2 for a long time.  相似文献   

2.
CeO2-MOx (M=Cu, Mn, Fe, Co, and Ni) mixed oxide catalysts were prepared by a citric acid complexation-combustion method. CeO2-MOx solid solutions could be formed with M cations doping into CeO2 lattice, while NiO and Co3O4 phases were detected on the surface of CeO2-NiO and CeO2-Co3O4 by Raman spectroscopy. The presence of M in CeO2 could obviously promote its catalytic activity for CH4 catalytic combustion and CO oxidation. Among the prepared samples, CeO2-CuO exhibited the best performance for CO oxidatio...  相似文献   

3.
The Ce0.7Zr0.3O2 solid solution and CeO2 were prepared using the sol-gel method. The phase structure, crystallite sizes and the reducibility of the catalysts were characterized by XRD and H2-TPR techniques. XRD results indicated that Zr^4+ had replaced part of Ce^4+ to form a fluorite-like solid solution, which was favorable to obtain ultrafine nanoparticles. The ratio of main HE consumption for Ce0.7Zr0.3O2:CeO2 was 4.4:1.0, implying that the solid solution could improve the reducibility compared to the single CeO2. The Ce0.7Zr0.3O2 solid solution catalyst showed a sharp combustion peak at 397 ℃, which was 200 ℃ lower than that of the single soot. The good catalytic activity of the Ce0.7Zr0.3O2 was attributed to the formation of nano-CeO2-based solid solution, which enhanced the reducibility and then improved the combustion activity. As Ce0.7Zr0.3O2 could be easily reduced to Ce0.7Zr0.3O2-x meanwhile, after oxygenation, the Ce0.7Zr0.3O2.x was recovered to Ce0.7Zr0.3O2 completely. A catalytic combustion reaction mechanism was proposed: the Ce0.7Zr0.3O2 was reduced to Ce0.7Zr0.3O2-x by the reaction with carbon and then it was recovered to Ce0.7Zr0.3O2-x by the interaction with O2.  相似文献   

4.
CuO/CeO2 catalysts were prepared by a coprecipitation method and tested for CO removal from reformed fuels via selective oxidation. The influence of the calcination temperature on the chemical compositions and catalytic performance of CuO/CeO2 catalysts were studied. It was found that CuO/CeO2 catalysts exhibit excellent CO oxidation activity and selectivity, and the complete removal of CO is attained when the catalysts are calcined at appropriate temperatures. XRD, TPR and XPS results indicate that CuO/CeO2 catalysts exhibit higher catalytic performance in CO selective oxidation due to the strong interaction between copper oxide and cerium dioxide, which promotes the dispersion and hydrogen reduction activity of copper.  相似文献   

5.
CeO2-Co3O4 Catalysts for CO Oxidation   总被引:1,自引:0,他引:1  
CeO2-Co3O4 catalysts for low-temperature CO oxidation were prepared by a co-precipitation method. In combination with the characterization methods of N2 adsorption/desorption, XRD, temperature-programmed reduction (TPR), and FT-IR, the influence of the cerium content on the catalytic performance of CeO2-Co3O4 was investigated. The results indicate that the prepared CeO2-Co3O4 catalysts exhibit a better activity than that of pure CeO2 or pure Co3O4. The catalyst with the Ce/Co atomic ratio 1 : 16 exhibits the best activity, which converts 77% of CO at room temperature and completely oxidizes CO at 45 ℃.  相似文献   

6.
The three-way catalysts (TWCs) promoters Ce0.6Zr0.4- x TbxO2-y were prepared by sol-gel method. BET surface areas analysis indicated that an increase of the dopant Tb content from x = 0.05 to x = 0.15 favors an increase of surface area from 66.8 to 80.4 m^2· g^-1 compared with the undoped sample Ce0 .6oZr0.40O2 65.1 m^2·g^- 1 after calcination at 650℃. Transmission electron microscopy (TEM) observation indicated that the doped samples have a higher thermal stability. The XRD and Raman spectra confirmed that the Ce0.6Zr0.4-xTbxO2-y cubic solid solution is formed. XPS analysis revealed that Ce and Tb mainly existed in the form of Ce^4+ and Tb^3 + , and Zr existed in the form of Zr^4+ on the surface of the samples. The doped samples were homogenous in composition ; the introduction of Tb into the CeO2-ZrO2 promoters resuited in the formation of a solid solution, and the concentration of surface lattice oxygen was increased.  相似文献   

7.
A citric acid complex method was employed to prepare Ce/Ni mixed oxides with various Ce/Ni ratios useful for selective oxidation methane to syngas in the absence of gaseous oxygen,and the catalytic activity measurement was investigated in a fixed bed reactor at 800 oC.The prepared oxygen carriers were characterized by various characterization techniques such as TG-DSC,XRD and TPR.The results of TG-DSC indicated that the Ce1-xNixO2 precursor generated a stable phase after the heat-treatment at temperatures above 800 oC.The XRD characterization suggested that some Ce-Ni solid solution was formed when Ni2+ ions was incorporated into the lattice of CeO2,and it led to the generation of O-vacancy which could improve the oxygen mobility in the lattice of oxygen carriers.It was found that Ce0.8Ni0.2O2 gave the highest activity in the selective oxidation methane to syngas reaction,and the average methane conversion,CO and H2 selectivity reached to 82.31%,82.41% and 87.64%,respectively.The reason could be not only attributed to the fitting amount of NiO dispersed on the CeO2 surface and bulk but also to actual lattice oxygen amount increased in oxygen carrier.  相似文献   

8.
Catalytic Oxidative Properties and Characterization of CuO/CeO2 Catalysts   总被引:1,自引:0,他引:1  
CeO2 ormaterialscontainingCeO2 possessuniqueredoxpropertiesincatalyticprocesses[1~ 3] ,andcanimprovedispersionofactivecomponentsonthesup portsandthusenhancetheirthermalstabilityandcatalyticactivity .MoststudieshaveusedCeO2 asanadditive[4 ] andexamineditsintera…  相似文献   

9.
Mesoporous CeO2-MnOx binary oxides with different Mn/Ce molar ratios were prepared by hydrothermal synthesis and characterized by scanning electron microscopy (SEM), N2 sorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and H2 temperature-programmed reduction (H2-TPR). The characterization results indicated that the CeO2-MnOx catalysts exhibited flower-like microspheres with high specific surface areas, and partial Mn cations could be incorporated into CeO2 lattice to form solid solution. The CeO2-MnOx catalysts showed better catalytic activity for CO oxidation than that prepared by the coprecipitation method. Furthermore, the CeO2-MnOx catalyst with Mn/Ce molar ratio of 1 in the synthesis gel (Ce-Mn-1) exhibited the best catalytic activity, over which the conversion of CO could achieve 90% at 135 ℃. This was ascribed to presence of more Mn species with higher oxida- tion state on the surface and the better reducibility over the Ce-Mn-I catalyst than other CeO2-MnOx catalysts.  相似文献   

10.
Copperoxideandironoxidearetradition aloxidizingcatalysts.Theirmixturesaregoodcatalystsforthepurificationofwastegases,es peciallyexcellentforcatalyzingthereductionofnitrogenoxidebycarbonoxideandtheoxi dationofnitrogenoxidebyoxygen .Recentre sultsaboutthes…  相似文献   

11.
The catalytic performance of methane partial oxidation was investigated on Pd/CeO2-ZrO2 and Pd/α-Al2O3 catalysts.The catalysts were characterized by XRD,Raman spectra,and TG-DTA techniques.The results show that CeO2-ZrO2 support is more advantageous for the catalytic activity and stability of catalysts compared to α-Al2O3.TG-DTA and Raman spectra results indicated that carbon deposited on the catalysts was in the form of graphite,which is the main reason for the deactivation of catalysts after a 24-hour reaction.Moreover,CeO2-ZrO2 had positive effect on inhibiting carbon deposition.  相似文献   

12.
Sn-Ce-O binary catalysts with different Sn/Ce molar ratios were prepared with co-precipitation method and applied for CO and CH4 oxidation. The catalysts were characterized by means of N2-BET, XRD and H2-TPR techniques. It was found that for those Sn rich samples such as SnCe91 and SnCe73, Ce cations were doped into the matrix of tetragonal rutile SnO2 to form SnO2 -based solid solution. As a consequence, the oxidation activity as well as the thermal stability was significantly improved compared with pure SnO2 . In contrast, for Ce rich samples such as SnCe19, SnCe37 and SnCe55, though the thermal stability was improved, the activity was worse than SnO2,due to the presence of much less amount of active oxygen species. Co-precipitation was found to be the best method to prepare Sn-Ce binary catalysts among all of the methods tried in this study.  相似文献   

13.
CuOx/CeO2 catalysts were prepared by adsorption-impregnation method, CO conversion was tested over the catalysts pretreated under different conditions for preferential CO oxidation in H2, and the catalysts were characterized with X-ray photoelectron spectroscopy and temperature programmed reduction. Experimental results show that there are two kinds of copper, which are Cu^+ and Cu^2+ in calcined CuOx/CeO2, Among them, the Cu^+ is the key active component for CO oxidation. The main reason is as follows: CO is activated by copper for CO oxidation over CuOx/CeO2, while CO can not be activated by Cu^2+. Only when Cu^2+ is reduced to Cu ^+ or Cu^0, the copper may be active for CO oxidation, moreover, the experimental results show that the reduction of Cu^2+ does not lead to an increase of catalytic activity. So the active species is Cu^+ in CuOx/CeO2 catalysts.  相似文献   

14.
MnOx-CeO2 composite catalysts were prepared by a coprecipitation method and tested for formaldehyde (HCHO) and carbon monoxide (CO) oxidation. X-ray photon spectroscopy (XPS) results indicated that the average oxidation state of surface Mn species in CeMn composite catalyst was higher compared to the pure MnOx. The enhancement of reactivity for HCHO oxidation was due to the activation of the lattice oxygen species in MnOx by the addition of CeO2, which was confirmed by the H2 temperature programmed reduction (H2-TPR) results. The remarkable enhancement of reactivity for CO oxidation by the addition of CeO2 was due to the active oxygen species generated on the CeO2 surface which directly participated in the reaction.  相似文献   

15.
The influences of CeO2-ZrO2 and γ-Al2O3 mixing methods on the catalytic activity and stability of partial oxidation of methane (POM) were investigated over Ni/Ce0.7Zr0.3O2-Al2O3 catalysts. The catalysts were characterized by XRD, TPR, H2-chemsorption, and TG-DTA. For fresh catalysts, the results showed that the salt precursor mixing catalyst (ATOM) presented better performance than the catalysts prepared by the precipitator mixing method (MOL) and the powder mechanically mixing method (MECH). The result of XRD suggested that the interaction between CeO2-ZrO2 and Al2O3 in ATOM sample was stronger than the others, which led to more lattice defects and thereby better initial activity. Moreover, the MECH sample had the best stability and the least coke deposition in 24 h stability tests. The results of TPR and H2-chemsorption indicated that the intimate contact of Ni-Al in MECH sample enhanced the ability of resisting coke deposition and metal sintering.  相似文献   

16.
Nickel catalysts supported on CeO2-ZrO2-CeO2,ZrO2-Al2O3 and Al2O3 were prepared and characterized by means of X-ray diffraction(XRD),BET areas,H2 temperature-programmed reduction(H2-TPR),and X-ray photoelectron spectroscopy(XPS).Through the test of catalytic partial oxidation of methane(CPOM),Ni/CeO2-ZrO2-Al2O3 displayed the highest activity,which resulted from its largest BET area and best NiO dispersion.Furthermore,Ni/CeO2-ZrO2-Al2O3 maintained a long-time stability in CPOM,which was attributed to its best coking resistance among all the prepared catalysts.  相似文献   

17.
The effects of ceria and lanthana additives on activity and thermal stabilization of the catalysts for CO oxidation were studied. The results show that the addition of CeO2 clearly improves the catalytic activity, which may derive from the synergic effect between CeO2 and PdO. The catalysts were characterized by means of temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) measurements. The XPS results of a slight increase in metal oxidation state reflect that the charge transfers from metal to ceria and ceria is slightly reduced, which leads to a decrease of the Ce-O bond strength. Pd-Ce synergism affects the reduction behavior of the catalysts. The TPR results show that the CeO2 ad-dition lowers the reduction temperature of PdO, while palladium facilitates the reduction of the ceria. For PdO/La2O3/Al2O3/monolith honeycomb catalysts, the aging test measurements at 1050 ℃ and the XRD results show that the formation of LaAlO3 which neutralizes the surface alumina defects inhibits the sintering of alumina.  相似文献   

18.
Ce0.67Zr0.33O2-Al2O3 solid solution was prepared by the co-precipitation method. Fe2O3-based catalysts supported on the solid solution were obtained by the impregnation method. The article revealed that the optimal loading amount of Fe2O3 on Ce0.67Zr0.33 O2-Al2O3 in our experimental condition for catalytic combustion of methane was 8% ( mass fraction). The prepared catalysts were characterized by BET, TPR, XRD analyses, and their catalytic activity was investigated after being calcined at 873 K and after being aged in water gas at 1273 K. When the loading amount of Fe203 was 8% ( mass fraction), the catalyst held the highest activity, and the best temperature speciality and thermal stability. The complete-conversion temperature of methane for fresh and aged sample was 788 and 838 K, respectively. The range between the light-off temperature and the complete-conversion temperature was only 15 K. The characterization results of XRD indicated that Fe2O3 was well dispersed on the Ce0.67Zr0.33O2-Al2O3 matrix. The results of BET and TPR were in good harmony with the catalytic activity results.  相似文献   

19.
CeO2 was synthesized via sol-gel process and used as supporter to prepare CuO/CeO2, Cu/CeO2 catalysts by impregnation method. The catalytic properties and characterization of CeO2, CuO/CeO2 and Cu/CeO2 catalysts were examined by means of a microreactor-GC system, HRTEM, XRD, TPR and XPS techniques. The results show that CuO has not catalytic activity and the activity of CeO2 is quite low for CO oxidation. However, the catalytic activity of CuO/CeO2 and Cu/CeO2 catalysts increases significantly. Furthermore, the activity of CuO/CeO2 is higher than that of Cu/CeO2 catalysts.  相似文献   

20.
Temperature programmed reduction (TPR) study was carried out for CeO2/A12O3 and CeO2/ZrO2 catalysts to evaluate oxygen storage property induced by a facile redox cycling of Ce ion. The CeO2/ZrO2 catalyst possesses excellent oxygen storage activity at 373 K after reduction above 1173 K although the oxygen storage of CeO2/Al2O3 catalyst after reduction above 1173 K is poor because of the formation of CeAlO3. Consequently, the oxygen storage on the CeO2/ZrO2 catalyst smoothly occurs from low temperatures when the catalyst is reduced even at high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号