首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
城市雾霾,特别是其中的PM2.5颗粒(当量直径≤2.5μm),因其自身危害及其携带的病原体对公共健康具有严重威胁而被人们广泛关注.静电纺丝纳米纤维作为空气过滤膜实现PM2.5高效捕获是国内外研究热点,但现有的纺丝滤膜仍存在无法兼顾高过滤效率和低空气阻力的问题.根据蛛丝微观结构特点,采用静电纺丝技术,通过在纺丝纤维内部引入不同形貌黏土矿物及其微球前驱体的策略,可实现复合纤维及其滤膜材料的多级结构构筑和微观形貌调控,成功设计具有纺锤状埃洛石微球节点的仿生纳米纤维滤膜材料.其纤维表面富含亲水基团及活性位点,粗糙的表面形貌具有高表面能及PM2.5颗粒的强捕获性.对比纯纺丝滤膜(62.59μm),纺锤状节点滤膜具有蓬松的纤维膜层间架构(74.17μm)及窄尺寸的表面孔隙,可实现稳定高效的PM2.5过滤效率(>85.0%)及持续低压差阻力(~39 Pa).本文探索了纳米纤维的官能化、多层次结构构建和微观形貌调控对纺丝滤膜过滤性能的影响及其过滤机制理论,为其他新型高性能高分子纳米纤维复合材料的设计和开发提供了借鉴.  相似文献   

2.
将聚乙烯醇(PVA)溶液与分散在其中的石墨氮化碳(g-C3N4)纳米片通过静电纺丝技术和交联反应成功地制备了具有增强抑菌性能的可生物降解复合纳米纤维膜。对PVA/g-C3N4(P-CN)复合纳米纤维膜的微观形貌、物理性能及抗菌性能进行了研究,分析了g-C3N4含量对复合纳米纤维膜的形貌及性能的影响。扫描电镜分析结果表明,P-CN纤维直径为200~300 nm,交联后纤维直径变为1μm左右,g-C3N4质量分数小于3%时,纳米片均匀地分布在纳米纤维的表面,通过拉伸和溶胀测试发现,交联复合纳米纤维膜具有良好的力学性能和优良的抗溶胀性能。抑菌测试结果表明,复合纳米纤维对大肠杆菌和金黄色葡萄球菌的抗菌效果随着g-C3N4含量的增加明显提高,在4×104 Lux的LED光激发10min后培养24 h的P-CN-5的最大抗菌环直径可以达到20 mm。研究结果表...  相似文献   

3.
为解决当前过滤材料过滤效率低,对空气中悬浮颗粒不能进行有效过滤,并因其不可降解而造成对环境的二次污染问题。本文以左旋聚乳酸(PLLA)为原料,加载天然麦饭石颗粒,通过静电纺丝法制备了可降解的麦饭石/PLLA复合纤维薄膜.利用场发射扫描电镜(FE-SEM)、红外光谱(FTIR)、介电常数测试,过滤性能测试、热失重分析(TGA)对麦饭石/PLLA复合纤维膜微观结构及其对空气中悬浮微粒的过滤性能进行了表征测试.结果表明:复合纤维膜的纤维表面呈扁平状,中间塌陷成沟,并且隔一段距离出现类似竹节状的“结节”,纤维平均直径为644 nm.经测定,复合纤维薄膜的介电常数为3.02,明显高于一次性医用口罩.复合纤维膜对粒径≥1 μm、≥ 2.5 μm、≥10 μm的悬浮颗粒平均过滤效率分别为88.94%、95.41%、96.18%,过滤初阻力稳定维持在35~39 Pa.TGA定量分析表明复合纤维膜对烟气总吸附率大于31.2%,对比医用一次性口罩,复合纤维膜过滤效率明显增强.  相似文献   

4.
采用静电纺丝技术制备纳米Ag-聚乙烯醇缩丁醛(PVB)复合纳米纤维,获得一类过滤性能和抗菌性能优异的空气过滤材料。采用TEM分析纳米Ag的形貌,采用SEM、FTIR和XRD等表征手段研究纳米Ag-PVB复合纳米纤维的微观形貌、化学结构以及结晶行为,并对其空气过滤性能、透气性能和抗菌性能进行了研究。结果表明:以乙醇为溶剂,当PVB含量为10wt%、纳米Ag含量为0.25wt%时,得到的纤维尺寸均一,平均直径为542.14 nm。性能测试结果表明,纺丝最佳时间为10 min,纳米Ag-PVB复合纳米纤维对PM2.5过滤效率为99.99%,过滤阻力为16 Pa,透气率为155.0 mm/s,并且对大肠杆菌表现出优异的抗菌性能,其抑菌率为95.52%。  相似文献   

5.
利用静电纺丝技术制备了不同纺丝时间的聚对苯二甲酸乙二醇酯(PET)纳米纤维膜,将PET纳米纤维膜、热熔型胶膜及涤纶针刺毡通过热处理复合,制备了三明治结构的PET纳米纤维膜/涤纶针刺毡过滤复合材料,利用SEM分析了PET纳米纤维膜形貌,通过TGA确定了PET纳米纤维膜的热处理条件,对不同纺丝时间的PET纳米纤维膜/涤纶针刺毡过滤复合材料透气性能、过滤性能进行了研究。结果表明:纺丝液浓度为18%,纺丝电压为15 kV,接收距离为21 cm,环境温度为13℃,环境湿度为20%条件下得到的PET纳米纤维膜纤维平均直径为514.95 nm;PET纳米纤维膜与涤纶针刺毡的复合温度为115℃;随纺丝时间的增加,PET纳米纤维膜的密度增加,PET纳米纤维膜/涤纶针刺毡过滤复合材料对颗粒物的过滤效率增大,透气性下降,当密度为3.86 g/m2时,PET纳米纤维膜/涤纶针刺毡过滤复合材料的过滤性能最优,其品质因子QF明显优于常规涤纶针刺毡,对1 μm以下颗粒物的过滤效率均高于93%,效率提高了58%以上,表现出优异的过滤性能。   相似文献   

6.
相较于传统纤维材料,纳米纤维膜因其高比表面积和超细孔隙率更适合用作空气过滤材料,此外传统的聚丙烯(PP)过滤材料亲水性差,水汽易聚集从而降低其过滤性能;针对传统空气过滤材料亲水性差的问题,基于静电纺丝的方法,以聚丙烯腈(PAN)和强亲水性的聚乙烯吡咯烷酮(PVP)为纺丝原料,制备了PAN/PVP纳米纤维膜,探讨了亲水材料PVP对其纳米纤维膜亲水和过滤性能的影响。采用傅里叶红外光谱、扫描电镜表征了纳米纤维膜的结构,由于亲水性材料PVP的引入,纺丝时纤维中静电导通性好,纺丝液能很好地被拉伸,使纤维直径变小,PVP添加质量为30%时纳米纤维膜的平均直径最小为358.12nm;此外,PVP的引入提高了纳米纤维膜的亲水性能,PVP添加质量为40%时其静态接触角为(11.5±2.5)°;但纳米过滤膜亲水性的增加会影响其过滤效率,PVP添加质量为10%时纳米纤维膜的过滤效率最高为83.4%±3.6%,纤维膜克重为1.17g/m2时品质因子最高为0.10Pa-1,纳米纤维膜具有优异的循环稳定性,300min内过滤稳定性好且过滤压力较低,可应用于对循环过滤性能...  相似文献   

7.
采用γ-氨丙基三乙氧基硅烷(KH-550)对麦饭石(MS)进行改性处理,通过静电纺丝法将改性后的麦饭石(KH550-MS)与聚乳酸(PLA)复合,制备了一种可降解MS/PLA复合纤维薄膜,并研究了其对空气中悬浮微粒的过滤行为,探讨了KH-550改性前后MS的表面特性、分散性、活化率及粒径分布情况。结果表明:经KH-550改性后,MS的表面活化率从5.5%增至91%,粉体表面每nm~2羟基数从8.6降至3.2,比表面积从22213.78m~2/kg增至23546.28m~2/kg,颗粒平均直径由0.31μm降至0.29μm。对空气中悬浮微粒的过滤性能测试结果表明:KH550-MS/PLA复合纤维膜对粒径在0.5~1μm、1~2.5μm、2.5~5μm以及5~10μm不同区间粒径的颗粒过滤效率分别为91.32%、97.11%、99%和99%,高于MS/PLA复合纤维膜。复合纤维膜具有良好的透气性,初阻力维持在34~37Pa范围内。与MS/PLA复合纤维膜相比,KH550-MS/PLA复合纤维膜过滤性能明显增强。  相似文献   

8.
目的 比较不同质量分数二氧化钛(TiO2)对抗菌热收缩膜的物理性能和抗菌效果。方法 以线性低密度聚乙烯、乙烯–醋酸乙烯酯共聚物、聚偏二氯乙烯为原料,采用共挤压法制备纳米TiO2质量分数分别为0%、2%、3%、4%的抗菌热收缩膜,并对其性能进行研究。结果 纳米TiO2颗粒在抗菌热收缩膜表面均匀分布,添加纳米TiO2对热收缩膜的厚度和不透明度没有显著影响(P>0.05)。随着纳米TiO2添加量的增加,纳米TiO2抗菌热收缩膜的断裂伸长率和拉伸强度呈先升高后下降趋势。当纳米TiO2质量分数为3%时,断裂伸长率和拉伸强度分别达到最大值238.48%和55.64MPa。添加纳米TiO2对热收缩膜的氧气透过量和水蒸气透过量没有影响(P>0.05)。纳米TiO2抗菌热收缩膜对假单胞菌MN10、肉杆菌VE51、乳球菌VE58和乳杆菌VMR17表现出优异的抗菌性能,随着TiO2  相似文献   

9.
先采用高压静电纺丝技术制备二氧化钛/聚酰胺酸(TiO2/PAA)复合纤维膜,然后对其进行热亚胺化处理制备出二氧化钛/聚酰亚胺(TiO2/PI)复合纤维隔膜。使用扫描电子显微镜(SEM)、傅里叶红外光谱分析仪(FTIR)、热失重分析仪和电化学工作站测试了TiO2/PI复合纤维隔膜的基本性能和电化学性能,结果表明:隔膜具有明显的三维网状结构,与未改性的纯PI隔膜相比,改性后TiO2/PI复合纤维隔膜的拉伸强度、孔隙率和吸液率分别提高到16.74 MPa、77.5%和550%;其热收缩性能较好,整体电化学性能优异。制备的LiFePO4(磷酸铁锂正极)/TiO2/PI/C(石墨负极)电池具有优异的循环稳定性和高放电容量,在1 C条件下进行100个循环后,其库伦效率在25℃和120℃高达96.7%和90.7%。  相似文献   

10.
聚丙烯(PP)熔喷空气过滤材料的抗菌性能较差,细菌、霉菌等微生物会寄生于材料表面。文中利用仿生改性法,以单宁酸(TA)为抗菌改性剂、CuSO4/H2O2为促进剂制备了具有优异抗菌性能的PP/TA熔喷空气过滤材料。分析讨论了TA改性溶液浓度和CuSO4/H2O2促进剂的加入对PP/TA熔喷空气过滤材料结构与性能的影响。结果表明,CuSO4/H2O2促进剂的加入将TA改性时间从24 h缩短至40 min,并增强了PP/TA熔喷空气过滤材料的改性牢度。当TA浓度为6 g/L时,PP/TA熔喷空气过滤材料相较于PP熔喷空气过滤材料其过滤效率和压降分别提升了2.7%和4 Pa,水接触角降低了17.5°;且TA改性对PP熔喷空气过滤材料的驻极性能并无影响,驻极后PP/TA熔喷过滤材料的过滤效率为95.56%,压降为38 Pa,且具备良好的抗菌性能。同时,CuSO4/H2<...  相似文献   

11.
采用静电纺丝技术,分别制备了纯聚乳酸(PLA)纳米纤维膜和不同TiO2含量的TiO2/PLA复合纳米纤维膜。利用扫描电子显微镜、傅里叶红外光谱和电子万能试验机分别对复合纳米纤维膜进行了形貌表征、成分分析和力学性能测试,用改良的振荡烧瓶法测试了复合纳米膜的抗菌性能。结果表明:随TiO2含量的增加,纤维直径减小而CV值和表面颗粒尺寸有所增加;复合纳米纤维膜中含有TiO2成分,证明TiO2与聚乳酸能够物理复合;添加适量的TiO2能够提高纳米纤维膜的断裂强度;在光催化条件下,TiO2/PLA复合纳米纤维膜对大肠杆菌和金黄色葡萄球菌表现出良好的抗菌性能,当TiO2含量为1%时,对两种菌的抑菌率分别达到92.9%和92.2%。  相似文献   

12.
通过硫化法制备了一种载银二氧化硅(SiO2)改性抗菌硅橡胶,并采用抑菌平板法、溶血试验及细胞毒性测试对其抗菌性能及生物安全性等进行表征和分析。结果表明,在载银SiO2抗菌剂含量为20 mg/mL时,硅橡胶对大肠杆菌与金黄色葡萄球菌的抑菌率分别达到100%和66%;溶血试验表明,抗菌硅橡胶的溶血率小于5%;且细胞毒性测试结果显示其细胞毒性为0级,表明载银SiO2改性抗菌硅橡胶具有良好的抗菌性能及生物安全性。在抗菌医用导管领域,表现出广阔的临床应用前景。  相似文献   

13.
采用静电纺丝技术结合化学沉淀法和高温煅烧处理, 制备了具有不同Sn含量的SnO2/NiO复合半导体纳米纤维。采用扫描电子显微镜(SEM), X射线衍射仪(XRD)和能量色散X射线光谱仪(EDS)对样品的形貌, 结构以及各元素含量进行表征。以乙醇为目标气体, 探究SnO2/NiO纳米纤维的气体传感性质, 以及Sn含量对复合纳米纤维气敏性能的影响。研究结果表明, SnO2/NiO复合纳米纤维具有三维网状结构, SnO2复合对NiO纳米纤维的气敏性能具有明显的增强作用。随着SnO2含量的增加, 复合纤维对乙醇气体的响应灵敏度增强, 其中响应最高的复合纳米纤维在最佳工作温度160 ℃条件下对体积分数为100×10-6乙醇气体的响应灵敏度为13.4, 是NiO纳米纤维最大响应灵敏度的8.38倍。与市面常见的乙醇气体传感器MQ-3相比, SnO2/NiO复合纳米纤维的最佳工作温度更低, 响应灵敏度更高, 具有一定的实际应用价值。  相似文献   

14.
膜污染一直是膜分离应用中的主要问题。将不同量的介孔石墨相氮化碳载银(m-g-C3N4/Ag)以共混法引入铸膜液中, 通过相转化法制备聚醚砜(PES)纳米复合膜, 系统研究了m-g-C3N4/Ag的添加对纳米复合膜形貌、过滤、抗菌、光催化和抗污染性能的影响。结果表明, m-g-C3N4/Ag的添加可以改善纳米复合膜的断面结构及表面亲水性。与纯PES膜相比, 纳米复合膜纯水通量随着掺杂量的增加显著提高, 各个样品对蛋白质的截留率均在90%以上, 表明m-g-C3N4/Ag的添加在不影响截留性能的前提下, 可以显著提高纳米复合膜的过滤性能。纳米复合膜的抗菌性能随着m-g-C3N4/Ag含量的增加而提高, 其中对铜绿假单胞菌的抗菌效果明显高于大肠杆菌。纯PES膜在光照下几乎不发生光降解。相比之下, 所有添加m-g-C3N4/Ag的纳米复合膜在可见光照射下均呈现良好的光催化性能, 且光催化活性随着m-g-C3N4/Ag的增加而逐渐增强。其中m-g-C3N4/Ag添加量最高的纳米复合膜显示出最明显的光催化作用, 在120 min内甲基橙的脱色率可达63%。通过四步过滤实验对所有膜的综合抗污染性能进行表征, 可知所有纳米复合膜通量恢复率均显著高于纯PES膜。水洗和可见光照射后所有膜的膜通量恢复率皆进一步提高。综上所述, 添加m-g-C3N4/Ag可以显著提高聚醚砜膜的抗菌性、可见光下光催化降解染料性能, 进而改善其综合抗污染性能。  相似文献   

15.
采用静电纺丝技术制备了氧化石墨烯(GO)不同含量的聚酰亚胺/氧化石墨烯(PI/GO)复合纳米纤维膜,并研究其结构、表面润湿性、热氧化特性、力学性能和过滤性能。结果表明,添加GO有利于纳米纤维的直径分布趋于均匀,在GO用量为0.5%(wt,质量分数)条件下,PI/GO复合纳米纤维膜平均纤维直径最小为(231±36)nm,孔隙率高达89.61%,拉伸强度为14.43MPa,杨氏模量为1.36GPa,断裂伸长率为10.84%,热氧化稳定性较纯PI纳米纤维膜提高了15℃,过滤效率最高达到96.5%,较纯PI纳米纤维膜提高了8%。添加GO能有效提高PI/GO复合纳米纤维膜的疏水性、力学性能及热氧化稳定性。  相似文献   

16.
炭膜具有优异的热稳定性、化学稳定性和气体分离性能.以聚酰亚胺中空纤维膜为前驱体,经过Tg附近退火预处理(250、300和350℃),进而高温炭化制备高性能中空纤维炭膜,研究了预处理条件对炭膜结构和气体分离性能的影响.结果表明,当退火预处理温度升高时,中空纤维炭膜的结构更加致密,其CO2/CH4和H2/CH4选择性提高,气体通量下降.尤其是当退火预处理温度为350℃时,与未经预处理的中空纤维炭膜相比,其CO2/CH4和H2/CH4选择性分别提高了98%和195%.同时,研究了渗透温度和压力对气体分离性能的影响,采用HIM(氦离子电镜)、FTIR和XRD对中空纤维炭膜的结构进行了表征.  相似文献   

17.
咪唑类离子液体(ILs)对CO2具有良好的亲和性和溶解性。离子液体与聚酰亚胺膜材料相结合,可以解决目前CO2难以分离和回收的问题。选用3种烷基链长度不同的离子液体与聚酰胺酸进行共混,通过高速搅拌器制备出一系列聚酰亚胺/离子液体共混膜,ILn含量为5%、10%、15%、20%。采用薄膜拉伸强度测试仪和气体透过仪对膜进行了测试。结果表明:离子液体共混的聚酰亚胺薄膜的力学性能相对于纯膜来说均有所提高。当离子液体为IL2,共混含量为20%时,膜对CO2的渗透性能最好,为1.5033Barrer,是纯膜的3倍;当离子液体为IL2,共混含量为15%时,膜对CO2/CH4的分离性能最好,为21.7859,约为纯膜的7倍。  相似文献   

18.
以中空纤维陶瓷膜为载体,聚芳醚酮为聚合物前驱体,采用浸涂-相转化结合的方法制备复合炭膜,探讨了制膜工艺对复合炭膜结构及性能的影响.结果发现,铸膜液浓度和提拉速率对膜的完整性影响较大,在15%质量分数铸膜液和2 cm/min提拉速率的条件下,可制备出表面膜层完整均一且兼具较高气体渗透通量的复合炭膜;通过控制制备前驱体膜过程中蒸发温度和蒸发时间,复合炭膜分离层缺陷大幅减少,气体分离选择性得到了显著提升.以15%铸膜液和2 cm/min提拉速率,在60℃蒸发温度及10 s蒸发时间的制膜工艺条件下制备出的复合炭膜,其O2/N2、CO2/N2和CO2/CH4选择性分别为5.62、26.27、25.10,O2、CO2渗透通量分别可达252、1 177 GPU.  相似文献   

19.
采用静电纺丝技术将聚丙烯腈(PAN)纳米纤维收集在皮芯型聚乙烯-聚丙烯(PE-PP)双组分微米纤维网上,制备PAN/PE-PP单层复合纤维网,再将多个单层复合纤维网层层堆叠,经热黏合加固,制备PAN/PE-PP多层复合空气过滤材料,研究了PAN/PE-PP复合纤维网的层数和纺丝时间对其孔径及过滤性能的影响。结果表明:多层复合的方式可得到与单层复合材料相似的孔径参数,但两种材料的孔道结构不同。在总面密度和总纺丝时间一定时,当PAN/PE-PP复合纤维网的层数大于10层时,PAN/PE-PP多层复合过滤材料的过滤效率和品质因子QF均明显大于PAN/PE-PP单层复合过滤材料,阻力略微增大;其中,相较PAN/PE-PP单层复合过滤材料,20层PAN/PE-PP复合过滤材料对≥0.3 μm颗粒的过滤效率提高了33%,阻力增加了5 Pa,QF值提高了30%。当总面密度和层数一定时,延长静电纺丝时间≥210 min,20层PAN/PE-PP复合过滤材料对颗粒的过滤效率可提高至90%以上,但阻力也急剧增大,因此静电纺丝时间为210 min的PAN/PE-PP多层复合材料的过滤性能最佳。因此,与相同面密度的PAN/PE-PP单层复合过滤材料相比,PAN/PE-PP多层复合过滤材料的过滤性能明显提高;微纳米纤维多层复合法是制备高效低阻复合空气过滤材料的有效方法。   相似文献   

20.
采用静电纺丝法制备了负载不同含量纳米石墨粉(NG)的聚丙烯腈(PAN)基复合纤维膜作为支撑材料,以癸酸-月桂酸-肉豆蔻酸(CA-LA-MA)三元低共熔物为固-液相变材料,通过物理吸附法制备CA-LA-MA/PAN/NG定形相变复合纤维膜。分别采用傅里叶变换红外光谱仪、扫描电子显微镜、差示扫描量热仪和传热测试装置对定形相变复合纤维膜的化学性能、形貌结构、储热性能、热能储存和释放速率进行深入分析。研究结果表明,CA-LA-MA三元低共熔物成功地被吸附到PAN基复合纤维膜中。制备的定形相变复合纤维膜的相变融化温度约为19℃,相变焓值约为114~131kJ/kg。由于添加了具有高导热系数的NG使定形相变复合纤维膜的热能储存和释放效率明显提高了43%和42%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号