首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NH3-modified swelling method was used for fume silica-filled silicone rubber compounds and vulcanizates. The method provides an estimation of the polymer–filler interaction in the system. Bound rubber reduction due to the modified swelling is shown to be dependent on the silica surface silanol content in the compound. The swelling behavior of silica-filled vulcanizates was also studied in an NH3 atmosphere. The fraction of polymer–filler attachments in the vulcanizates was found not to depend on the particle size of silica and its surface modification, depending only on the total polymer–filler contact area in the system. No relation was found between bound rubber content in a compound and swelling of a filled vulcanizate of the same composition. The strong rubber-to-filler adherence found in toluene changed to nonadherence under NH3-modified swelling conditions. The NH3-induced cleavage of silica–silicone rubber attachments was found to be nearly completely reversible. In the silica-filled silicone rubber vulcanizates, the fraction of polymer–filler attachments due to polymer–filler interaction represents a substantial contribution to the total number of network chains.  相似文献   

2.
It is usually desired but often challenging to improve the wet traction, and reduce the abrasion and rolling resistance simultaneously in tread rubber, which is referred to as “magic triangle” in tire industry. To fulfill this goal, the filler dispersion and interfacial interaction required to be improved, as they are two essential factors to concurrently govern the ultimate properties of rubber composites. Herein, we synthesized the epoxidized solution polymerized styrene butadiene rubber (ESSBR) with different epoxy level, and used them as interfacial compatibilizer to promote the silica dispersion and silica/rubber interfacial interaction. The epoxy of ESSBR would react with silanol on silica surface and co-crosslink with SSBR simultaneously, therefore build a strong bridge between rubber matrix and filler. By incorporation of 20 phr of ESSBR-15% (15% of double bonds on main chain was epoxidized), the wet grip was improved by 40%, and DIN abrasion and rolling resistance were reduced by 38% and 21%, respectively with hardly sacrifice the mechanical properties. We envisage that this study provides an approach for the fabrication of rubber composites with improved silica dispersion and strengthened interfacial interaction.  相似文献   

3.
To obtain good reinforcement by silica filler in nonpolar rubbers, it is almost essential to use coupling agents, such as bis(triethoxy silyl propyl) tetrasulfane (TESPT). Chemicals that can interact with the silanol groups on the silica particles and reduce their network formation are also expected to enhance reinforcement. We made a comparative evaluation of TESPT, epoxidized rubber seed oil (ERSO), and their combination as a coupling agent and a plasticizer in silica‐filled natural rubber compounds. The results indicate that compounds containing ERSO showed physical and mechanical properties between that of TESPT and naphthenic oil. The action of ERSO in the improvement of the properties was expected to be bifunctional and similar to that of TESPT; that is, it caused the hydrophobation of silica, which increased its degree of dispersion and the formation of chemical bonds with the rubber, thereby ensuring strong polymer–filler interactions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3531–3536, 2004  相似文献   

4.
Natural rubber (NR) usage is wide‐spread from pencil erasers to aero tyres. Carbon black and silica are the most common reinforcing fillers in the rubber industries. Carbon black enhances the mechanical properties, while silica reduces the rolling resistance and enhances the wet grip characteristics. However, the dispersion of polar silica fillers in the nonpolar hydrocarbon rubbers like natural rubber is a serious issue to be resolved. In recent years, cardanol, an agricultural by‐product of the cashew industry is already established as a multifunctional additive in the rubber. The present study focuses on dispersion of silica filler in natural rubber grafted with cardanol (CGNR) and determination of its technical properties. The optimum cure time reduces and the cure rate increases for the CGNR vulcanizates as compared to that of the NR vulcanizates at all loadings of silica varying from 30 to 60 phr. The interaction between the phenolic moiety of cardanol and the siloxane as well as silanol functional groups present on the silica surface enhances the rubber–filler interaction which leads to better reinforcement. The crosslink density and bound rubber content are found to be higher for the silica reinforced CGNR vulcanizates. The physico‐mechanical properties of the silica reinforced CGNR vulcanizates are superior to those of the NR vulcanizates. The CGNR vulcanizates show lower compression set and lower abrasion loss. The dynamic‐mechanical properties exhibit less Payne effect for silica reinforced CGNR vulcanizates as compared to the NR vulcanizates. The transmission electron photomicrographs show uniform dispersion of silica filler in the CGNR matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43057.  相似文献   

5.
Some of the theories that have been developed to explain the origin of bound rubber are critically reviewed and discussed with respect to published data. Theories for carbon black filled compounds and for silica–silicone rubber mixtures are considered; the phenomena involved are likely to be very different, with clear chemical aspects for the latter systems. A common feature emerges, however, from these theories: the area of the polymer–filler interaction site, which is generally considered as a fitting parameter in most approaches. This article concentrates on this aspect and suggests that, with respect to recent findings about the very surface of carbon black particles, an explanation for bound rubber can be offered that considers strong topological constraints exerted by the filler surface on rubber segments. Calculations of interaction site area made with experimental data give values close to a fraction of the half-lateral surface of the structural unit representative of the rubber considered. It follows that the bound rubber variation during storage can now be understood by considering a slow replacement of short rubber chains initially adsorbed on filler particles by larger ones, as demonstrated by calculated data. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 2257–2268, 1997  相似文献   

6.
采用沉淀法和气相法纳米SiO2补强硅橡胶,考察纳米SiO2的添加量和比表面积对结合橡胶量、橡胶吸附层厚度以及硅橡胶补强力学性能的影响.通过溶胀平衡实验计算填料补强能力参数C值,并通过扫描电镜观察填料纳米SiO2在硅橡胶中的分散状态.结果表明:填料添加量对硅橡胶力学性能的影响效果显著,当质量比为0.4时,补强橡胶具有较好的力学综合性能,结合橡胶量增大至49.24%,吸附层厚度增至6.87nm,对于气相法纳米SiO2,增大填料比表面积有利于提高结合橡胶量,改善填料的补强效果,补强硅橡胶热稳定性也相应提高,此外填料的C值也随之增大,选一步验证了填料的补强效果增强.  相似文献   

7.
高强度硅橡胶混炼胶的制备   总被引:3,自引:0,他引:3  
用用Z浆捏合机,将端乙烯基硅橡胶,气相白炭黑及羟基硅氧烷进行混炼,制备了高强度硅橡胶混炼胶。在白炭黑用量为40份时,混炼胶硫化胶的拉伸强度为11.7MPa,撕裂强度为49.7kN/m。9份端乙烯基硅橡胶与1份普通甲基乙烯基硅橡胶并用制备的混炼胶,其撕裂强度高达57.7kN/m,实验所制得的混炼胶与国外同类产品物理机械性能相当。  相似文献   

8.
超细改性矿物粉体增强硅橡胶   总被引:11,自引:0,他引:11  
采用材料物理化学和复合材料的方法,系统地研究了8种矿物及其超细粉体和改性粉体与硅本的相互作用。结果表明,湍石、石英和硅灰石对硅橡胶基体具有较好的增强作用。粒径小、比面积大、长径比大等粉体性质好的填料,其增强性能高。界面粘附功与界面张力比值大的复合材料的力学性能好。具有表面活性基团(通过表面改性)、表面缺陷和一的表面羟基是提高粉体增强性能的重要因素。复合粉体的增强性能与粉休性质、混炼胶中的结合橡胶、  相似文献   

9.
Because silica has strong filler‐filler interactions and adsorbs polar materials, a silica‐filled rubber compound exhibits poor dispersion of the filler and poor cure characteristics in comparison with those of a carbon black‐filled rubber compound. Acrylonitrile‐butadiene rubber (NBR) improves filler dispersion in silica‐filled styrene‐butadiene rubber (SBR) compounds. The influence of the NBR type on the properties of silica‐filled SBR compounds containing NBR was studied with NBRs of various acrylonitrile contents. The composition of the bound rubber was different from that of the compounded rubber. The NBR content of the bound rubber was higher than that of the compounded rubber; this became clearer for NBR with a higher acrylonitrile content. The Mooney scorch time and cure rate became faster as the acrylonitrile content in NBR increased. The modulus increased with an increase in the acrylonitrile content of NBR because the crosslink density increased. The experimental results could be explained by interactions of the nitrile group of NBR with silica. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 385–393, 2002  相似文献   

10.
A novel epoxy-containing silicone rubber network was constructed by hydrosilylation reaction among the synthesized vinyl-containing epoxy resin prepolymers, vinyl terminated silicone oil and hydrogen-containing silicone oil. The structure of the vinyl-containing epoxy resin prepolymers was characterized by Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy. Morphology observations revealed that uniform “sea-island” phase separation structure was present in modified silicone rubbers. The compatibility between silicone rubber and epoxy resin was enhanced, thanks to the good dispersion of vinyl-containing epoxy prepolymers in silicone rubber matrix. The adhesion and tensile properties of modified silicone rubbers were greatly enhanced when compared with those of unmodified counterparts. The thermal degradation behavior of cured silicone rubbers was studied using thermogravimetric analysis and thermogravimetric/infrared spectrometry analysis. Results showed that the formation of epoxy-containing silicone rubber network altered the degradation process of silicone rubber, thereby yielding a higher residue at 800 °C under nitrogen atmosphere. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48397.  相似文献   

11.
The mechanical performance of natural rubber (NR), synthetic poly-isoprene rubber (IR), and styrene–butadiene rubber (SBR) composites filled with various silica/silane systems is investigated. The results are analyzed by referring to micro-mechanical material parameters, which quantify the morphological and structural properties of the polymer and filler network. These are obtained from fits with the dynamic flocculation model (DFM) describing the strongly nonlinear quasi-static stress–strain response of filler-reinforced elastomers as found from multihysteresis measurements of the investigated compounds. We focus on the reinforcement mechanisms of silica compounds with coupling and covering silane, respectively. The fitted material parameters give hints that the coupling silane provides a strong chemical polymer–filler coupling, which is accompanied by improved strength of filler–filler bonds for all three rubbers types. This may result also from the chemical coupling of short chains bridging adjacent silica particles. It implies larger stress values for the coupling silane and, in the case of NR and IR, a more pronounced “Payne effect” compared to the covering silane. In contrast, for SBR, the coupling silane delivers a lower Payne effect, which is explained by differences in the compatibility between rubber type and silane-grafted silica surface. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48435.  相似文献   

12.
Two kinds of treated fumed silica were prepared by treatment with either tetraphenylphenyltriethoxysilane (TPHTS) or both tetraphenylphenyltriethoxysilane and hexamethyldisilazane (TPHMTS), and were used as reinforcing filler for silicone rubber. The resistance to irradiation of the silicone rubber obtained was investigated by gamma ray of dose 500 kGy in air. The mechanical properties and the average molecular weight between crosslinking points (Mc) of the silicone rubber were determined before and after irradiation. The results show that the fumed silica treated by tetraphenylphenyltriethoxysilane (TPHPHS) can effectively improve the radiation resistance of silicone rubber while the fumed silica treated by both tetraphenylphenyltriethoxysilane and hexamethyldisilazane (MMN) cannot only effectively improve the radiation resistance of silicone rubber but also has excellent reinforcing effect on silicone rubber. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
David W. Southwart 《Polymer》1976,17(2):147-152
Unextracted polymer and liquid absorption values have been determined on unvulcanized silicone rubber/silica mixes and on unfilled silicone rubber vulcanizates, for comparison of the two different types of three-dimensional structure which must exist. In both types, the amount of rubber extracted on immersion in liquid is dependent on the expansion of the respective network but only in the former is the amount dependent on the method of extraction; this is attributed to interaction between filler and rubber continuing as a result of immersion. Even at equilibrium, the amount of unextracted polymer can be greater than that of bound rubber. In some mixes, liquid absorption is substantially constant during extraction of considerable amounts of soluble rubber. This is attributed, in the presence of filler, to a dependence of the absorption on the previously postulated interparticular rubber which, in turn, is dependent on the mean distance between filler particles. Although unextracted polymer is also dependent on that mean distance, it is proposed that this is a secondary effect of network expansion by the absorbed liquid. As some published values of bound rubber have undoubtedly been of unextracted polymer, these results help to explain published differences of opinion on the value of bound rubber for investigation of filler reinforcement phenomena.  相似文献   

14.
Nano silica is generated in situ inside the uncrosslinked chloroprene rubber (CR) by the sol‐gel reaction of tetraethoxysilane (TEOS). This results in appreciable improvement in mechanical properties of the CR composites at relatively low filler content. Furthermore, exploitation of reactive organosilanes, γ‐aminopropyltrimethoxysilane (γ‐APS) in particular, in the silica synthesis process facilitates growing of spherical silica particles with a size distribution in the range of 20‐50 nm. The silica particles are found to be uniformly dispersed and they do not suffer from filler‐filler interaction. Additionally, it is observed that the silica particles are coated by silane and rubber chains together which are popularly known as bound rubber. The existence of the bound rubber on silica surface has been supported by the detailed investigations with transmission electron microscopy (TEM), energy filtered transmission electron microscopy (EFTEM) and energy dispersive X‐ray spectroscopy (EDAX). The interaction between rubber and silica, via bi‐functionality of the γ‐APS, has been explored by detailed FTIR studies. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43717.  相似文献   

15.
Since silica has strong filler–filler interactions and adsorbs polar materials, a silica‐filled rubber compound has a poor dispersion of the filler and poor cure characteristics. Improvement of the properties of silica‐filled styrene–butadiene rubber (SBR) compounds was studied using acrylonitrile–butadiene rubber (NBR). Viscosities and bound rubber contents of the compounds became lower by adding NBR to the compound. Cure characteristics of the compounds were improved by adding NBR. Physical properties such as modulus, tensile strength, heat buildup, abrasion, and crack resistance were also improved by adding NBR. Both wet traction and rolling resistance of the vulcanizates containing NBR were better than were those of the vulcanizate without NBR. The NBR effects in the silica‐filled SBR compounds were compared with the carbon black‐filled compounds. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1127–1133, 2001  相似文献   

16.
The availability of the coupling agent bis (3-triethoxysilylpropyl)-tetrasulfide (TESPT) has provided an opportunity for enhancing the reinforcing capabilities of precipitated amorphous white silica in rubber. Styrene-butadiene rubber, synthetic polyisoprene rubber (IR), acrylonitrile-butadiene rubber, and natural rubber (NR) containing the same loading of a precipitated silica filler were prepared. The silica surface was pretreated with TESPT, which is a sulfur-bearing bifunctional organosilane to chemically bond silica to the rubber. The rubber compounds were subsequently cured by reacting the tetrasulfane groups of TESPT with double bonds in the rubber chains and the cure was optimized by adding sulfenamide accelerator and zinc oxide. The IR and NR needed more accelerators for curing. Surprisingly, there was no obvious correlation between the internal double bond content and the accelerator requirement for the optimum cure of the rubbers. Using the TESPT pretreated silanized silica was a very efficient method for cross-linking and reinforcing the rubbers. It reduced the use of the chemical curatives significantly while maintaining excellent mechanical properties of the cured rubbers. Moreover, it improved health and safety at work-place, reduced cost, and minimized damage to the environment because less chemical curatives were used. Therefore, TESPT was classified as “green silane” for use in rubber formulations.  相似文献   

17.
医用硅橡胶凝胶量的控制   总被引:1,自引:0,他引:1  
朱世成 《天津化工》2006,20(5):45-48
采用过氧化物做交联剂,白碳黑做补强剂,研究了硅橡胶混炼胶凝胶量的形成以及对性能的影响。说明不加结构控制剂的硅橡胶凝胶量是可控制的,这种胶料的物理机械性能可以满足使用要求。  相似文献   

18.
The use of fatty amines, obtained from natural fatty acids, in rubber compounds to improve silica dispersion was evaluated. Fatty amines can interact with the free silanol groups of the bis(3‐triethoxysilyl‐propyl) tetrasulfide (TESPT) silane‐modified silica forming an amine‐modified silica complex, which reduces the hydrophilic nature of the silica surface, minimizing the silica–silica interactions, and reducing the formation of secondary structures of silica. The effect of the addition of different amines and/or polyethylenglycol to SBR compounds loaded with silane‐modified silica was evaluated. Finally, incorporation of fatty amines improved the processability and traction properties of rubber compounds loaded with modified silica. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3222–3229, 2006  相似文献   

19.
Filler dispersion is a critical factor in determining the properties of filled rubber composites. Silica has a high density of silanol groups on the surface, which lead to strong filler–filler interactions and a poor filler dispersions. A cure accelerator, N‐tert‐butyl‐2‐benzothiazole sulfenamide (TBBS), was found to improve filler dispersion in silica‐filled natural rubber (NR) compounds. For the silica‐filled NR compounds without the silane coupling agent, the reversion ratio generally increased with increase in TBBS content, whereas those of the silica‐filled NR compounds containing the silane coupling agent and carbon black‐filled NR compounds decreased linearly. The tensile strength of the silica‐filled NR vulcanizate without the silane coupling agent increased as the TBBS content increased, whereas carbon black‐filled samples did not show a specific trend. The experimental results were explained by TBBS adsorption on the silica surface and the improvement of silica dispersion with the aid of TBBS. Copyright © 2003 Society of Chemical Industry  相似文献   

20.
高阻尼硅橡胶的研制   总被引:1,自引:0,他引:1  
以不同阻尼剂分别对硅橡胶主链和填料表面进行改性的途径制备了阻尼硅橡胶,分别通过DMTA和应力应变法对制备的阻尼硅橡胶进行了研究,结果表明:采用阻尼剂DA-1/DA-3=15/5并用的配方,硅橡胶的阻尼性能最优,综合性能最好。硅橡胶的蠕变性能随着阻尼剂DA-1比例的增加而改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号