首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
将尼龙(PA)1010盐和PA66盐按照质量比为9∶1的比例制备了PA1010/66共聚物。选择(苯乙烯/乙烯-丁烯/苯乙烯)共聚物接枝马来酸酐(SEBS-g-MAH)和两种小分子增塑剂邻苯二甲酸二异癸酯、N-丁基苯磺酰胺(D IDP、BSBA),采用共混挤出法制备了(PA1010/66)/SEBS-g-MAH/D IDP/BSBA共混物,并对其力学性能进行了研究。结果表明,随着SEBS-g-MAH含量的增加,共混物的冲击强度明显提高。当SEBS-g-MAH质量分数为15%时,其缺口冲击强度为72.7 kJ/m2,是PA1010/66共聚物的16倍左右;拉伸强度保持率是PA1010/66共聚物的83%左右。通过SEM研究发现,SEBS-g-MAH对PA1010/66共聚物的增韧机理为银纹剪切带增韧机理。  相似文献   

2.
利用双螺杆挤出机制备聚碳酸酯(PC)/聚对苯二甲酸丁二醇酯(PBT)/马来酸酐接枝氢化苯乙烯-丁二烯-苯乙烯共聚物(SEBS-g-MAH)的共混物.通过扫描电子显微镜(SEM)、平板流变仪研究了SEBS-g-MAH对PC/PBT共混物的机械性能、断面形态结构、动态力学行为的影响.结果表明:SEBS-g-MAH提高了PC/PBT共混物的相容性,随着SEBS-g-MAH用量的增加,共混物的缺口冲击强度和断裂伸长率上升,拉伸强度和弯曲强度下降.当SEBS-g-MAH质量分数为5%时共混物的综合性能最佳,同时,SEBS-g-MAH的加入.并未对PC/PBT共混物的成型加工性能产生不良影响.  相似文献   

3.
通过熔融共混的方法制备了不同配比的聚苯硫醚(PPS)/马来酸酐接枝苯乙烯-乙烯-丁二烯-苯乙烯嵌段共聚物(SEBS-g-MAH)共混物,采用热失重方法,分析了SEBS-g-MAH对PPS热稳定性能的影响,并且通过差示扫描量热分析法研究了SEBS-g-MAH对PPS结晶性能的影响,同时研究了PPS/SEBS-g-MAH共混物的力学性能。结果表明,共混物的热稳定性较纯PPS有所下降;PPS结晶峰宽度随SEBS-g-MAH含量的增加先减小后增大,结晶速率和结晶度较纯PPS减小,但对熔点影响较小;SEBS-g-MAH的加入使共混物的缺口冲击强度和断裂伸长率增大,韧性增加。当SEBS-g-MAH含量为40%时,缺口冲击强度为13.1 k J/m2,断裂伸长率为13.7%,但拉伸强度较纯PPS下降,为54.2 MPa。  相似文献   

4.
以马来酸酐(MAH)接枝苯乙烯-(乙烯-丁烯)-苯乙烯共聚物SEBS(SEBS-g-MAH)为增韧剂,有机蒙脱土(OMMT)为增强填料,甲基丙烯酸缩水甘油酯(GMA)为相容剂,采用熔融挤出方法制备了PA6/SEBS-gMAH/OMMT复合材料.通过力学、毛细管流变性能测试,考察了SEBS-g-MAH、OMMT和GMA对共混物的力学性能及流变性能的影响.结果表明,共混材料能在保持基本强度及模量稳定的情况下提高冲击强度,获得良好的综合力学性能.PA6及其共混物均为假塑性流体,在230~260℃共混材料的非牛顿指数为0.603~0.931,表观黏度随着剪切应力的增加而降低;加入SEBS-g-MAH、OMMT和/或GMA使得PA6的表观黏度增大,黏流活化能降低;在恒定剪切应力下PA6共混物可在较宽的温度范围内成型加工.  相似文献   

5.
PA6/PP/SEBS-g-MAH共混物的相容性研究   总被引:2,自引:1,他引:2  
采用马来酸酐接枝(氢化苯乙烯/丁二烯/苯乙烯)共聚物(SEBS-g-MAH)作为增容剂,研究了增容剂用量对尼龙6/聚丙烯(PA6/PP)共混体系相态结构、力学性能的影响,以及在相同增容剂用量下不同PA6、PP配比对体系相形态的影响。结果表明,SEBS-g-MAH中的酸酐基团能与PA6末端的氨基发生化学反应,在PA6和PP的内表面形成PA6-SEBS接枝共聚物,明显改善了两相的界面相容性,并使共混物的力学性能得到显著提高。共混物冲击断面形貌的分析表明,共混物发生了明显的脆韧转变。  相似文献   

6.
选用SEBS-g-MAH作为增韧剂,采用熔融挤出的方法制备了尼龙1012/SEBS-g-MAH的共混合金,并对其力学性能和微观形态结构进行了研究.结果表明,随着SEBS-g-MAH用量的增加,共混合金的缺口冲击强度明显提高.当SEBS-g-MAH质量分数为15%时,其缺口冲击强度为125 kJ/m2,是纯尼龙1012的20倍左右,而拉伸强度和弯曲强度保持在70%以上.通过微观形态的研究得出增韧机理为银纹-剪切带增韧机理.  相似文献   

7.
SEBS—g-MAH增韧聚苯硫醚性能研究   总被引:1,自引:0,他引:1  
采用熔融挤出法制备了聚苯硫醚(PPS)与马来酸酐接枝苯乙烯-乙烯-丁二烯-苯乙烯嵌段共聚弹性体(SEBS-g-MAH)的共混物,并考察了共混物的热行为、力学性能、相形态及增韧机理.结果表明,两组分的玻璃化温度有相互靠近的趋势,显示PPS和SEBS-g-MAH部分相容;随着SEBS-g-MAH用量增加,共混物的韧性得到很好的提高,当SEBS-g-MAH的质量分数为30%时,其冲击强度达到7.5 kJ/m2.PPS/SEBS-g-MAH/Kevlar纤维共混体系中,SEBS-g-MAH既可以作为增韧剂,又可以作为两相相容剂来提高PPS基体和Kevlar纤维的界面黏结能力,使共混物达到增强增韧的效果.  相似文献   

8.
SEBS增韧PVDF的研究   总被引:1,自引:0,他引:1  
马长花  王新 《塑料工业》2014,(11):34-38,62
采用不同结构热塑性弹性体苯乙烯-乙烯-丁烯-苯乙烯(SEBS)作为增韧剂添加到聚偏氟乙烯(PVDF)中以提高韧性;并探索两种相容剂聚丙烯接枝马来酸酐(PP-g-MAH)和苯乙烯-(乙烯-丁烯)-苯乙烯嵌段共聚物接枝马来酸酐(SEBS-g-MAH)对PVDF/SEBS共混体系物理机械性能的影响。结果表明,线型结构的SEBS有利于提高PVDF的拉伸韧性,相容剂SEBS-g-MAH有助于进一步提高拉伸韧性,其用量在1%时共混体系的断裂伸长率达到最大值。  相似文献   

9.
采用哈克密炼机制备了聚乳酸(PLA)与马来酸酐接枝苯乙烯-乙烯-丁二烯-苯乙烯嵌段共聚弹性体(SEBS-g-MAH)的共混物,并对共混物的力学性能、流变性能和微观结构进行了分析。结果表明,共混物的拉伸强度随着SEBS-g-MAH含量的增加而下降,断裂伸长率随着SEBS-g-MAH含量的增加而增大。当SEBS-g-MAH的含量为30 %时,共混物的冲击强度提高了2.5倍,共混物的韧性得到提高。随着SEBS-g-MAH含量的增加,PLA熔体黏度的变化趋势与SEBS-g-MAH越来越相似,即熔体黏度随着频率的增大而下降。扫描电镜分析表明,MAH基团改善了两相间的界面作用,增韧作用明显。  相似文献   

10.
研究了改性剂种类及其含量对(丙烯腈/苯乙烯/丁二烯)共聚物(ABS)力学性能的影响.结果表明,ABS/(丙烯腈/苯乙烯/丙烯酸酯)共聚物(ASA)共混体系的冲击强度最高;ABS/ABS胶粉共混体系的缺口冲击强度最高;ASA和ABS胶粉对ABS拉伸强度的影响最小.(苯乙烯/丁二烯/苯乙烯)嵌段共聚物(SBS)的质量分数为25%时,ABS的断裂伸长率最高.扫描电子显微镜观察发现,ABS/ABS胶粉共混试样断面发生的屈服程度较大.加入少量相容剂,ABS的力学性能并不能得到明显改善.  相似文献   

11.
PA610/PC合金的制备及其力学性能研究   总被引:1,自引:0,他引:1  
分别选用环氧树脂(EP)及(乙烯/马来酸酐/甲基丙烯酸缩水甘油酯)三元共聚物(EMG)为增容剂,采用熔融挤出法制备了PA610/PC/EP合金和PA610/PC/EMG合金,并研究了这两种合金的力学性能。结果表明,在保持合金其它力学性能基本不变的情况下,当PA610/PC/EP的质量比为75/25/2时,合金的缺口冲击强度比未加入EP时提高了83.7%,比纯PA610提高了84.1%;而且在PA610/PC(75/25)体系中加入EMG增容时,合金的缺口冲击强度也随其含量的增加而明显提高;在加入9份EMC的PA610/PC/EMG体系中再加入2份EP协同增容时,合金的缺口冲击强度比未增容时提高了142.0%。  相似文献   

12.
SEBS—g—MAH对PPO/PA66相容性影响的研究   总被引:4,自引:0,他引:4  
张师军  顾觉生 《塑料工业》2001,29(3):23-24,31
研究了SEBS-g-MAH对PPO/PA66相容性的影响。结果表明SEBS-g-MAH是PPO/PA66共混物良好的反应型增容剂。对PPO/PA66=75/25的共混物,SEBS-g-MAH的加入对合金的拉伸强度、弯曲强度、Izod缺口冲击强度均有提高,但刚性和耐热性略有下降,共混体系中PA66的玻璃化转变温度升高,PPO的玻璃化转变温度下降。用量一般控制在2.5-5.0PHR之间为宜。对于PPO/PA66=25/75的共混物,SEBS-g-MAH同样也起增容作用,在不太影响力学性能的条件下,明显改善了PPO/PA66合金的冲击强度,但以用量为5PHR为宜。  相似文献   

13.
PBT/PA610共混合金的制备及其力学性能的研究   总被引:1,自引:0,他引:1  
选用环氧树脂(EP)、(苯乙烯/乙烯-丁烯/苯乙烯)三嵌段共聚物接枝马来酸酐(SEBS-g-MAH)和(乙烯/马来酸酐/甲基丙烯酸缩水甘油酯)三元共聚物(EMG)为增容剂,采用熔融挤出的方法制备了PBT/PA610/EP、PBT/PA610/EP/SEBS、PBT/PA610/EP/EMG3种合金,研究了这3种合金的力学性能。结果表明,当PBT/PA610/EP的质量比为70/30/3时,合金的冲击强度比不加EP时提高了37.3%,比纯PBT提高了91.2%;而且在PBT/PA610/EP的质量比为70/30/3时,随着SEBS-g-MAH和EMG含量的增加,合金的冲击强度也明显提高。  相似文献   

14.
充油SEBS-g-MAH增韧PA6性能的研究   总被引:4,自引:0,他引:4  
以SEBS为增韧剂对PA6进行增韧改性,研究了SEBS的用量和处理方法对PA6性能的影响以及充油SEBS-g-MAH对不同牌号PA6性能的影响。结果表明,PA6的冲击韧性随SEBS用量的增加而提高,尤其是充油SEBS-g-MAH的加入,使共混物的韧性及伸长率得到明显改善,当充油SEBS-g-MAH的质量分数为10%时,体系的常温缺口冲击强度是纯PA6的6倍。SEBS的熔融接枝过程中,严格控制挤出温度和转速是增韧改性的关键。  相似文献   

15.
采用酚醛树脂(PF)、DCP和硫磺等硫化体系对PA/SAN/NBR共混体系进行动态硫化,研究了该共混体系的缺口冲击强度、冲击行为和分散相形态。结果发现,PF比其它硫化体系更有效,可制得超韧的PA/SAN/NBR(50/25/25)合金;SEM照片表明,随着PF用量增加,共混体系中分散相粒子变小,形态变规则,动态硫化体系的相容性变好。  相似文献   

16.
选用SEBS-g-MAH和EP为复合增容剂,采用熔融挤出的方法制备了PA610/PC合金,研究了该合金的力学性能、熔融结晶及微观结构形态。结果表明,当PA610/SEBS-g-MAH(EP)/PC组分比为75/9(2)/25时,合金的冲击强度比不加增容剂时提高了281.4%,断裂伸长率提高了346.0%。而增容剂的加入使合金中PA610的结晶温度升高,结晶速率增大而结晶度降低,由于异相成核作用使结晶发生细化,使得韧性提高、熔点降低。微观结构形态研究表明,在只加入SEBS-g-MAH的PA610/PC合金中,合金断面有很多PC被拔出及余留空洞的现象;在加入EP协同增容后,PC被拔出的现象减少,与PA610基体的界面粘合增强,空洞消失。  相似文献   

17.
SEBS接枝MAH改性PA6物理性能研究   总被引:9,自引:0,他引:9  
研究了PA6/SEBS和PA6/SEBS-g-MAH共混体系与PA6/SEBS/SEBS-g-MAH三元共混体系的力学性能与流变性能变化。结果表明,采用SEBS增韧尼龙6,控制SEBS和SEBS-g-MAH的比例,在SEBS总量为20%时能够制得超韧性的尼龙6,缺口冲击强度可达到90kJ/m2以上。PA6/SEBS表现出不相容共混体系的流变行为,PA6/SEBS-g-MAH共混体系高于共混物中任一组分的粘度,反映出共混后增强了两相的界面相互作用。三元共混体系的粘度表现为SEBS和SEBS-g-MAH共同作用结果。  相似文献   

18.
Superior impact properties were obtained when maleic anhydride grafted styrene ethylene/butylene styrene block copolymer (SEBS-g-MAH) was used as a compatibilizer in blends of polyamide 6 (PA 6) and isotactic polypropylene (PP), where polyamide was the majority phase and polypropylene the minority phase. The optimum impact properties were achieved when the weight relation PA:PP was 80:20 and 10 wt% SEBS-g-MAH was added. The blend morphology was systematically investigated. Transmission electron microscopy (TEM) indicated that the compatibilizer forms a cellular structure in the PA phase in addition to acting as an interfacial agent between the two polymer phases. In this cellular-like morphology the compatibilizer appears to form the continuous phase, while polyamide and polypropylene form separate dispersions. In microscopy, PA appeared as a fine dispersion and PP as a coarse dispersion. The mechanical properties indicated that in fact PA, too, is continuous, and the blend can be interpreted as possessing a modified semi-interpenetrating network (IPN) structure with separate secondary dispersion of PP. The coarser PP dispersion plays an essential role in impact modification. Binary blends of the compatibilizer and one blend component were also investigated separately. The same cellular structure was observed in the binary PA/SEBS-g-MAH blends, and SEBS-g-MAH again appeared to form the continuous phase when the elastomer concentration was at least 10 to 20 wt%. By contrast, in PP/SEBS-g-MAH only conventional dispersion of elastomeric SEBS-g-MAH was observed up to 40 wt% elastomer. Impact strength was improved and the elastic modulus was lowered in both PA/SEBS-g-MAH and PP/SEBS-g-MAH blends when the elastomer content was increased. The changes in modulus indicate that the semi-IPN-like structure is formed in the binary PA/SEBS-g-MAH blends as well as in the ternary structure.  相似文献   

19.
通过一年的自然大气曝露试验和1000小时氙灯人工加速老化试验,对经稳定的ABS、ABS/PVC合金、耐候ASA老化前后的颜色变化和悬臂梁缺口冲击强度保持率进行比较,可以得出结论:ABS/PVC合金的耐候性能与经稳定ABS相比有大幅度提高;在一定时间内,颜色稳定性和悬臂梁缺口冲击强度保持率与ASA相近。  相似文献   

20.
PFPA1212/SEBS-g-MAH共混合金力学性能和微观结构的研究   总被引:5,自引:0,他引:5  
制备了石油发酵尼龙1212/SEBS-g-MAH共混合,工对其力学性能和微观结构进行了研究。结果表明,随着增韧剂含量的增加,共混合金的制品冲击强度显著提高,当增韧剂含量为25%时,缺口冲击强度为61.26kJ/m^2,是纯尼龙1212的15倍,拉伸强度保持率是纯尼龙1212的90%。微观结构研究表明,尼龙1212的断裂属于韧性断裂,增韧后的尼龙1212制品冲击断面有明显的应力发白现象,冲击强度提高的主要原因在于应力集中点的增多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号