首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
为改善高光谱图像小样本类别的分类性能,提高模型特征表达的稳健性,提出了双分支多维注意力特征融合的神经网络分类模型(DBMD)。DBMD采用两个分支分别进行光谱特征提取和混合特征提取。光谱分支通过密集连接的扩张卷积逐级提取特征,然后融合低、中、高级语义信息作为特征输出。混合分支采用3D-2D网络架构,并通过改进的Inception块提取空间尺度特征。此外,注意力机制分别应用于光谱、空间和空谱特征,进行特征细化,增强重要区域的特征响应。最后,将不同维度的细化特征联合输入至分类器进行分类。在Indian Pines和Salinas Valley数据集上利用5%和1%的样本进行实验,分别取得了98.40%和99.78%的总体精度,与其他六种网络架构相比,该模型在准确性和稳定性上都具有更优的表现。  相似文献   

2.
针对高光谱图像(hyperspectral image)样本人工标记困难导致的样本数量不足的问题, 本文提出了一个结合注意力和空间邻域的少样本孪生网络算法. 它首先对高光谱图像进行PCA预处理, 实现数据降维; 其次, 对模型训练样本采用间隔采样和边缘采样的方式进行选取, 以有效减少冗余信息; 之后, Siamese network以大小不同的patch形式进行两两结合, 构建出样本对作为训练集进行训练, 不仅实现了数据增强的效果, 还能在提取光谱信息特征的同时, 充分提取目标像素光谱信息以及其周围邻域空间信息; 最后, 添加光谱维度的注意力模块以及空间维度的相似度度量模块, 分别对光谱信息和空间邻域信息进行权重分布, 以达到提升分类性能的目的. 实验结果表明, 本文提出的方法在部分公开数据集上对比常用方法取得了较好的实验效果.  相似文献   

3.
针对利用滤波器提取高光谱图像的空间特征辅助光谱信息来提高高光谱图像分类精度的不足,提出导向滤波提取的空间纹理信息和最大概率结合的高光谱图像分类算法(SGD-SVM-GD)。鉴于空间纹理信息挖掘不足,该方法首先利用导向滤波提取由主成分分析降维后的高光谱图像空间纹理特征,然后将空间信息与光谱信息结合,交由支持向量机完成分类得到初始分类结果,最后结合导向滤波和概率最大化优化分类结果。实验表明,相比单纯使用光谱信息、纯空间信息和空谱结合的SVM分类方法以及边缘保持滤波的方法,所提出的SGDSVM-GD方法对高光谱图像的分类精度有较大提高,表明了该方法的有效性。  相似文献   

4.
基于全局语义交互的粗粒度注意力机制不能有效利用各模态间的语义关联提取到模态信息中的关键部分,从而影响分类结果。针对这个问题提出了一个模态信息交互模型MII(modal information interaction),通过细粒度注意力机制提取模态的局部语义关联特征并用于情感分类。首先,模态内信息交互模块用于构建模态内的联系并生成模态内交互特征,随后模态间信息交互模块利用图像(文本)的模态内交互特征生成门控向量来关注文本(图像)中相关联的部分,从而得到模态间的交互特征。考虑到特征中存在的冗余信息,模型加入了自适应特征融合模块,从全局特征层面对特征进行选择,增强了包含情感信息的关键特征的表达能力,弱化了冗余信息对分类结果的影响。在MVSA-Single和MVSA-Multi两个公开数据集上的实验结果表明,该模型优于一系列基线模型。  相似文献   

5.
高光谱图像波段多、波段之间关联性强, 但其空间纹理和几何信息的表达较弱, 传统分类模型存在空间光谱特征提取不充分、计算量大的问题, 分类性能有待提高. 针对此问题, 提出一种基于小波变换的多尺度多分辨率注意力特征融合卷积网络 (wavelet transform convolutional attention network, WTCAN), 采用小波变换思想对光谱波段进行4次分解, 通过层次性提取光谱特征可减少计算量. 该网络设计了空间信息提取模块, 同时引入金字塔注意力机制, 通过设计逆向跳跃连接网络结构利用多尺度获取空间位置特征, 增强空间纹理表达能力, 可以有效改进传统2D-CNN特征提取尺度单一、忽略空间纹理细节等缺陷. 本文对所提出的WTCAN模型分别在不同空间分辨率高光谱数据集Indian Pines (IP)、WHU_Hi_HanChuan (HanChuan)、WHU_Hi_HongHu (HongHu)进行实验, 通过对比SVM、2D-CNN、DBMA、DBDA、HybridSN模型效果, WTCAN模型取得较好的分类效果, 3个数据集的分类总体精度分别达到了98.41%、99.64%、99.67%, 可为高光谱图像的分类研究提供参考依据.  相似文献   

6.
针对高光谱图像光谱维度高、现有网络无法提供深度级的多层次特征,从而影响分类精度和速度的问题。首先采用核主成分分析对高光谱图像进行降维,使降维后的数据具有最佳区分度,提出了一种基于混合卷积与三重注意力的卷积神经网络(hybrid convolutional neural network with triplet attention, HCTA-Net)模型,该模型设计了一种基于三维、二维和一维卷积的混合卷积神经网络,通过不同维度卷积神经网络的融合,提取高光谱图像精细的光谱–空间联合特征。在二维卷积中加入深度可分离卷积,减少了模型参数,同时引入三重注意力机制,使用三分支结构实现跨维度信息交互,抑制无用的特征信息。在Indian Pines、Salinas和Pavia University数据集上的实验结果表明,本文提出的模型优于其他对比方法,总体分类精度分别达到了99.16%、99.87%和99.76%。  相似文献   

7.
基于卷积神经网络的图像分类方法的关键是提取有区分性的重点特征.为了提高重点特征的关注度,增强网络泛化能力,文中提出双分支多注意力机制的锐度感知分类网络(Double-Branch Multi-attention Mechanism Based Sharpness-Aware Classification Network, DAMSNet).该网络以ResNet-34残差网络为基础,首先,修改ResNet-34残差网络输入层卷积核尺寸,删除最大池化层,减小原始图像特征的损失.再者,提出双分支多注意力机制模块,嵌入残差分支中,从全局特征和局部特征上提取图像在通道域和空间域的上下文信息.然后,引入锐度感知最小化算法,结合随机梯度下降优化器,同时最小化损失值和损失锐度,寻找具有一致低损失的邻域参数,提高网络泛化能力.在CIFAR-10、CIFAR-100、SVHN数据集上的实验表明,文中网络不仅具有较高的分类精度,而且有效提升泛化能力.  相似文献   

8.
针对高光谱图像分类在特征提取过程中高分辨率信息丢失,导致分类精度下降的问题,提出一种基于空谱分组卷积密集网络的高光谱图像分类方法。设计光谱-空间三维分组卷积密集模块,对光谱与空间特征进行分步提取,利用分组卷积构造的密集网络能减少数据固有信息冗余,使高分辨率的特征进行重用,避免细节特征信息丢失;设计光谱残差注意力模块,该模块通过结合空-谱特征计算注意力权重,对提取到的光谱特征进行权重重分配,对光谱信息富有的区域进行增强。实验结果表明,相比于若干最优的深度网络方法,所提高光谱图像分类方法具有更好的分类性能。  相似文献   

9.
目前基于深度学习的视网膜OCT图像分类方法存在网络特征提取能力低、小目标病变分类困难等问题。为此本文提出了一种双分支多尺度特征融合网络,通过加入门控注意力机制,利用深层特征作为选通信号传递给浅层特征,在消除冗余特征的同时,获得更细尺度的抽象信息。同时加入空洞空间金字塔模块,实现在不降低特征图分辨率的同时增大感受野,按不同比例有效捕获全局上下文信息,提高了小目标病变分类精度。实验结果表明,本文提出的方法在视网膜OCT图像分类任务中取得了较好效果,分类准确率达97.9%。  相似文献   

10.
目的 将高光谱图像和多光谱图像进行融合,可以获得具有高空间分辨率和高光谱分辨率的光谱图像,提升光谱图像的质量。现有的基于深度学习的融合方法虽然表现良好,但缺乏对多源图像特征中光谱和空间长距离依赖关系的联合探索。为有效利用图像的光谱相关性和空间相似性,提出一种联合自注意力的Transformer网络来实现多光谱和高光谱图像融合超分辨。方法 首先利用联合自注意力模块,通过光谱注意力机制提取高光谱图像的光谱相关性特征,通过空间注意力机制提取多光谱图像的空间相似性特征,将获得的联合相似性特征用于指导高光谱图像和多光谱图像的融合;随后,将得到的融合特征输入到基于滑动窗口的残差Transformer深度网络中,探索融合特征的长距离依赖信息,学习深度先验融合知识;最后,特征通过卷积层映射为高空间分辨率的高光谱图像。结果 在CAVE和Harvard光谱数据集上分别进行了不同采样倍率下的实验,实验结果表明,与对比方法相比,本文方法从定量指标和视觉效果上,都取得了更好的效果。本文方法相较于性能第二的方法EDBIN (enhanced deep blind iterative network),在CAVE数据集上峰值信噪比提高了0.5 dB,在Harvard数据集上峰值信噪比提高了0.6 dB。结论 本文方法能够更好地融合光谱信息和空间信息,显著提升高光谱融合超分图像的质量。  相似文献   

11.
目的 与传统分类方法相比,基于深度学习的高光谱图像分类方法能够提取出高光谱图像更深层次的特征。针对现有深度学习的分类方法网络结构简单、特征提取不够充分的问题,提出一种堆叠像元空间变换信息的数据扩充方法,用于解决训练样本不足的问题,并提出一种基于不同尺度的双通道3维卷积神经网络的高光谱图像分类模型,来提取高光谱图像的本质空谱特征。方法 通过对高光谱图像的每一像元及其邻域像元进行旋转、行列变换等操作,丰富中心像元的潜在空间信息,达到数据集扩充的作用。将扩充之后的像素块输入到不同尺度的双通道3维卷积神经网络学习训练集的深层特征,实现更高精度的分类。结果 5次重复实验后取平均的结果表明,在随机选取了10%训练样本并通过8倍数据扩充的情况下,Indian Pines数据集实现了98.34%的总体分类精度,Pavia University数据集总体分类精度达到99.63%,同时对比了不同算法的运行时间,在保证分类精度的前提下,本文算法的运行时间短于对比算法,保证了分类模型的稳定性、高效性。结论 本文提出的基于双通道卷积神经网络的高光谱图像分类模型,既解决了训练样本不足的问题,又综合了高光谱图像的光谱特征和空间特征,提高了高光谱图像的分类精度。  相似文献   

12.
目的 高光谱遥感影像数据包含丰富的空间和光谱信息,但由于信号的高维特性、信息冗余、多种不确定性和地表覆盖的同物异谱及同谱异物现象,导致高光谱数据结构呈高度非线性。3D-CNN(3D convolutional neural network)能够利用高光谱遥感影像数据立方体的特性,实现光谱和空间信息融合,提取影像分类中重要的有判别力的特征。为此,提出了基于双卷积池化结构的3D-CNN高光谱遥感影像分类方法。方法 双卷积池化结构包括两个卷积层、两个BN(batch normalization)层和一个池化层,既考虑到高光谱遥感影像标签数据缺乏的问题,也考虑到高光谱影像高维特性和模型深度之间的平衡问题,模型充分利用空谱联合提供的语义信息,有利于提取小样本和高维特性的高光谱影像特征。基于双卷积池化结构的3D-CNN网络将没有经过特征处理的3D遥感影像作为输入数据,产生的深度学习分类器模型以端到端的方式训练,不需要做复杂的预处理,此外模型使用了BN和Dropout等正则化策略以避免过拟合现象。结果 实验对比了SVM(support vector machine)、SAE(stack autoencoder)以及目前主流的CNN方法,该模型在Indian Pines和Pavia University数据集上最高分别取得了99.65%和99.82%的总体分类精度,有效提高了高光谱遥感影像地物分类精度。结论 讨论了双卷积池化结构的数目、正则化策略、高光谱首层卷积的光谱采样步长、卷积核大小、相邻像素块大小和学习率等6个因素对实验结果的影响,本文提出的双卷积池化结构可以根据数据集特点进行组合复用,与其他深度学习模型相比,需要更少的参数,计算效率更高。  相似文献   

13.
为了充分利用高光谱图像的光谱信息和空间结构信息,提出了一种新的基于随机森林的高光谱遥感图像分类方法,首先,利用主成分分析降低数据的维数,并对主成分进行独立成分分析提取其光谱特征,同时消除像元的空间相关性,再采用形态学分析提取像元的空间结构特征,然后,根据像元的谱域和空域特征分别构造随机森林,并引入空间连续性对像元点的预测结果进行约束修正,最后由投票机制决定最后的分类结果。在AVIRIS和ROSIS高光谱图像上的实验结果表明,所提方法的分类性能要优于传统的高光谱图像分类方法,且分类精度高于基于单一特征的方法。  相似文献   

14.
目的 地物分类是对地观测研究领域的重要任务。高光谱图像具有丰富的地物光谱信息,可用于提升遥感图像地物分类的准确度。如何对高光谱图像进行有效的特征提取与表示是高光谱图像分类应用的关键问题。为此,本文提出了一种结合倒置特征金字塔和U-Net的高光谱图像分类方法。方法 对高光谱数据进行主成分分析(principal component analysis,PCA)降维,获取作为网络输入的重构图像数据,然后使用U-Net逐层提取高光谱重构图像的空间特征。与此同时,利用倒置的特征金字塔网络抽取相应层级的语义特征;通过特征融合,得到既有丰富的空间信息又有较强烈的语义响应的特征表示。提出的网络利用注意力机制在跳跃连接过程中实现对背景区域的特征响应抑制,最终实现了较高的地物分类精度。结果 分析了PCA降维方法和输入数据尺寸对分类性能的影响,并在Indian Pines、Pavia University、Salinas和Urban数据集上进行了对比实验。本文方法在4个数据集上分别取得了98.91%、99.85%、99.99%和87.43%的总体分类精度,与支持向量机(support vector machine,SVM)等相关算法相比,分类精度高出1%~15%。结论 本文提出一种结合倒置特征金字塔和U-Net的高光谱图像分类方法,可以应用于有限训练样本下的高光谱图像分类任务,并在多个数据集上取得了较高的分类精度。实验结果表明倒置特征金字塔结构与U-Net结合的算法能够高效地实现高光谱图像的特征提取与表示,从而获得更精细的分类结果。  相似文献   

15.
针对高光谱图像分类领域中特征利用不足的问题,提出了一种基于生成对抗网络(Generative Adversarial Networks,GANs)的高光谱图像分类方法。根据高光谱图像空间域和光谱域的相关性,利用GANs方法,挖掘其深层特征,生成可分性更高的高光谱图像,并通过支持向量机(Support Vector Machine,SVM)对生成的高光谱图像进行分类。使用两组高光谱数据进行实验,结果表明,该方法能够在少量高光谱波段的情况下,对抗学习到较好的生成模型,使得生成的高光谱图像在地物分类实验中具有更高的分类精度。  相似文献   

16.
为解决有限训练样本下的高光谱遥感图像分类特征提取不充分的问题, 该论文提出了多尺度3D胶囊网络方法来助力高光谱图像分类. 相比传统的卷积神经网络, 所提出的网络具有等变性且输入输出形式都是向量形式的神经元而非卷积神经网络中的标量值, 有助于获取物体之间的空间关系及特征之间的相关性, 且在有限训练样本下能避免过拟合等问题. 该网络通过3种不同尺度的卷积核操作对输入图像进行特征提取来获取不同尺度的特征. 然后3个分支分别接不同的3D胶囊网络来获取空谱特征之间的关联. 最后将3个分支得到的结果融合在一起, 采用局部连接并通过间隔损失函数得到分类结果. 实验结果表明, 该方法在开源的高光谱遥感数据集上具有很好的泛化性能, 且相比其他先进的高光谱遥感图像分类方法具有较高的分类精度.  相似文献   

17.
In this paper, we propose a novel residual fusion classification method for hyperspectral image using spatial–spectral information, abbreviated as RFC-SS. The RFC-SS method first uses the Gabor texture features and the non-parametric weighted spectral features to describe the hyperspectral image from both aspects of spatial and spectral information. Then it applies the residual fusion method to save the useful information from different classification methods, which can greatly improve the classification performance. Finally, the test sample is assigned to the class that has the minimal fused residuals. The RFC-SS classification method is tested on two classical hyperspectral images (i.e. Indian Pines, Pavia University). The theoretical analysis and experimental results demonstrate that the RFC-SS classification method can achieve a better performance in terms of overall accuracy, average accuracy, and the Kappa coefficient when compared to the other classification methods.  相似文献   

18.
目的 高光谱图像波段数目巨大,导致在解译及分类过程中出现“维数灾难”的现象。针对该问题,在K-means聚类算法基础上,考虑各个波段对不同聚类的重要程度,同时顾及类间信息,提出一种基于熵加权K-means全局信息聚类的高光谱图像分类算法。方法 首先,引入波段权重,用来刻画各个波段对不同聚类的重要程度,并定义熵信息测度表达该权重。其次,为避免局部最优聚类,引入类间距离测度实现全局最优聚类。最后,将上述两类测度引入K-means聚类目标函数,通过最小化目标函数得到最优分类结果。结果 为了验证提出的高光谱图像分类方法的有效性,对Salinas高光谱图像和Pavia University高光谱图像标准图中的地物类别根据其光谱反射率差异程度进行合并,将合并后的标准图作为新的标准分类图。分别采用本文算法和传统K-means算法对Salinas高光谱图像和Pavia University高光谱图像进行实验,并定性、定量地评价和分析了实验结果。对于图像中合并后的地物类别,光谱反射率差异程度大,从视觉上看,本文算法较传统K-means算法有更好的分类结果;从分类精度看,本文算法的总精度分别为92.20%和82.96%, K-means算法的总精度分别为83.39%和67.06%,较K-means算法增长8.81%和15.9%。结论 提出一种基于熵加权K-means全局信息聚类的高光谱图像分类算法,实验结果表明,本文算法对高光谱图像中具有不同光谱反射率差异程度的各类地物目标均能取得很好的分类结果。  相似文献   

19.
目的 为了有效提高高光谱图像分类的精度,提出了双重L2稀疏编码的高光谱图像分类方法。方法 首先对高光谱图像进行预处理,充分结合图像的空间信息和光谱信息,利用像元的空间连续性,用L2稀疏编码重建图像中每个像元。针对重建的图像数据,依据L2稀疏编码的最小误差和编码系数实现分类。结果 在公开的数据库AVIRIS高光谱图像上进行验证,分类精度为99.44%,与支持向量机(SVM)、K最近邻(KNN)和L1稀疏编码方法比较,有效地提高了分类的准确性。结论 实验结果表明,提出的方法应用于高光谱图像分类具有较好的分类效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号