首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
耿亮  王录才  王芳  刘杰  游晓红 《铝加工》2010,(3):12-15,34
介绍了粉末冶金压制法制备泡沫铝的国内外研究现状,讨论了一些因素对PCM法制备泡沫铝发泡行为及其孔结构的影响。并对PCM法制备大尺寸泡沫铝的工艺做了介绍。最后对PCM法制备泡沫铝合金今后的发展方向和现存问题做了分析。  相似文献   

2.
In the powder compact melting technique, metallic foams are fabricated by heating a precursor, thus initiating cell growth and foam formation. Proper precursor fabrication is very important because the density distribution after foaming and the foamability are determined during the precursor-fabrication process. The fabrication of the precursor has to be performed very carefully because any residual porosity or other defects will lead to poor results in further processing. In order to evaluate the effect of the compaction parameters on the kinetics of the foaming process, a series of experiments were performed. In this study, 6061 aluminum foams having a closed-cell structure were fabricated by the powder compact method and an induction heating process. An induction coil was designed to obtain a uniform temperature distribution over the entire cross-sectional area of the precursor. To establish the foamable precursor fabrication conditions, the effects of process parameters such as titanium hydride content (0.1 to 1.5 wt pct) and the compression pressure of the foamable precursor (50 to 150 kN) on the pore morphology were investigated.  相似文献   

3.
通过累积叠轧法制备泡沫铝.采用称重法研究泡沫铝孔隙结构,利用光学显微镜观察泡沫铝孔隙形貌.发现以TiH2为发泡介质,当发泡温度660~680℃和发泡时间6~10 min时,利用累积叠轧法制备泡沫铝的孔隙结构特性最好.发泡温度和发泡时间的最佳值与发泡剂用量有关,TiH2质量分数为1.5%,在670℃发泡8 min,泡沫铝的孔隙率可达到42%,孔径为0.43 mm.以制备的泡沫铝为夹芯,通过轧制复合制备了TC4钛合金/泡沫铝芯和1Cr18Ni9Ti不锈钢/泡沫铝芯三明治板.利用光学显微镜和能谱仪研究了三明治板的界面.面板与芯板间的化合反应形成了界面的反应层,界面实现了冶金结合.   相似文献   

4.
Compared to traditional pore structure with high porosity (≥ 80 pct) and large pore size (≥ 3 mm), aluminum foams with low porosity (60 to 70 pct) and small pore size (≤ 2 mm) possess higher compressive property and formability. In order to achieve the goal of reducing pore size, Cu-TiH2 composite powder prepared by ball milling preoxidized TiH2 with Cu powder was used as a blowing agent. Its gas release behavior was characterized by thermogravimetric analysis and differential scanning calorimetry. The results show that the ball milling treatment can advance the gas release process and slow the gas release rate at the same time. All these changes are favorable to the reduction of porosity and pore size. Such Cu-TiH2 composite powder provides an alternative way to fabricate aluminum foams with low porosity and small pore size.  相似文献   

5.
Aluminium foams have become popular because of their properties such as high stiffness combined with very low density. The aluminium foams are being used in many applications like automobiles, railways, aerospace, ship building, household applications etc. The development of foam with consistent quality and study of foam structure–property relation is important for both scientific and industrial applications. Metallic foams are commonly produced using hydride and carbonates foaming agents. However carbonate foaming agents are safer to handle than hydrides and produce aluminum foam with a fine, homogenous cell structure, low cost and easily available. The number of pores per inch and relative density of the foam play an important role on their physical and mechanical properties. Hence it is very important to investigate effect of grain size of calcium carbonate foaming agent on pores per inch and relative density. The present work deals with the effect of grain size of the calcium carbonate forming agent on the physical properties of an eutectic Al–Si alloy closed cell foam. The foam was produced with different grain size of calcium carbonate (150, 106, 75, 53 µm) as a foaming agent. The pores per inch and density of the foam produced with different grain size of calcium carbonates as foaming agent are determined. Relative density is in the range of 0.21–0.34, pores per inch is in the range of 11–20 for the produced eutectic Al–Si alloy closed cell foam. It is observed that as grain size of calcium carbonate used for production of aluminium foam increases, the number of pores per inch decreases, relative density decreases and porosity increases.  相似文献   

6.
介绍了PCM法制备泡沫铝的国内外研究现状,讨论了一些因素对泡沫铝发泡行为及其孔结构的影响。并对PCM法大尺寸泡沫铝及复合结构的制备、应用做了介绍。最后对PCM法制备泡沫铝今后的发展方向和现存问题做了分析。  相似文献   

7.
Al-3.7 pct Si-0.18 pct Mg foams strengthened by AlN particle dispersion were prepared by a melt foaming method, and the effect of foaming temperature on the foaming behavior was investigated. Al-3.7 pct Si-0.18 pct Mg alloy containing AlN particles was prepared by noncompressive infiltration of Al powder compacts with molten Al alloy in nitrogen atmosphere, and it was foamed at different foaming temperatures ranging from 1023 to 1173 K. The porosity of prepared foam decreases and the pore structure becomes homogeneous with increasing foaming temperature. When the foaming temperature is higher than 1123 K, homogeneous pores are formed in the prepared ingot without using oxide particles and metallic calcium granules, which are usually used for stabilizing a foaming process. This stabilization of the foaming at high temperatures is possibly caused by Al3Ti intermetallic compounds formed at high temperature and AlN particles. Compression tests for the prepared foams revealed that the absorbed energy per unit mass of prepared Al-3.7 pct Si-0.18 pct Mg foam is higher than those of aluminum foams strengthened by alloying or dispersion of reinforcements. It is remarkable that the oscillation in stress, which usually appears in strengthened aluminum foams, does not appear in the plateau stress region of the present Al-3.7 pct Si-0.18 pct Mg foam. The homogeneity in cell walls and pore morphology due to the stabilization of pore formation and growth by AlN and Al3Ti particles is a possible cause of this smooth plateau stress region.  相似文献   

8.
Gasarites are a subclass of metallic foams that have a cylindrical pore morphology created by directional solidification of metals saturated with a gas. Thermal decomposition is an alternative process in which the soluble gas is delivered by decomposition of a particulate gas source. Aluminum gasarites formed through decomposition of titanium and zirconium hydrides were studied to both replicate the results of a previous study and discern pore-formation mechanisms. Replication of the previous study was not achieved, and additional processing enhancements were required to produce gasarite pore morphologies. For the first time, zirconium hydride was utilized to produce gasarites, with porosity levels and pore sizes lower than that from titanium hydride. Maximum average porosity levels of 10 and 6 pct were observed for titanium hydride and zirconium hydride, respectively. Pore-formation mechanisms in aluminum gasarite foams created via thermal decomposition of titanium and zirconium hydrides were evaluated through metallographic analysis and scanning electron microscopy. Definitive evidence of gas–metal eutectic pore growth was not found, but pore morphological characteristics and chemical analysis of particulate at pore surfaces support direct gas evolution from the hydride particles as a contributor to pore formation and growth.  相似文献   

9.
PCM法泡沫铝合金的研究现状   总被引:1,自引:1,他引:0  
牛雪  王录才  王芳 《铝加工》2009,(1):51-54
介绍了泡沫铝的国内外研究现状和改善泡沫铝合金性能的途径,讨论了一些因素对PCM法制备泡沫铝发泡行为及其孔结构的影响。这些因素包括预制体制备方式、粉体颗粒粒度、TiH2的分解特性和冷却方式。并对PCM法制备泡沫铝合金今后的发展方向和现存问题做了分析。  相似文献   

10.
11.
多孔钛的粉末冶金法制备及其力学性能   总被引:1,自引:0,他引:1  
采用粉末冶金法成功制备出力学性能与骨匹配的开孔型多孔钛,其孔隙率分布在8.6%~35.4%之间,平均孔径随孔隙率增加而增加;抗压强度随孔隙率的增加而降低,分布在252~848 MPa之间;通过应力-应变曲线计算得到其弹性模量在7.2~9.9 GPa之间,接近人骨弹性模量。此多孔钛有望成为理想的人工骨修复材料。  相似文献   

12.
在粉末冶金发泡法制备泡沫铝的基础上,研究发泡剂、发泡温度等参数对泡沫铝制备的影响。结果表明,Ti H2的分解峰值温度与铝的熔点十分接近,为640℃,其分解的气体体积是相同质量Ca CO3的30倍,是一种制备高孔隙泡沫铝较好的发泡剂;通过比较研究,发现铝发泡的合适温度为700~750℃,发泡时间宜选择在900 s左右;铝粉表面氧化膜对泡沫铝产生影响,氧化膜质量分数在9.8%左右时,孔隙率达到最大值77%,在氧化膜质量分数为8.2%左右时,孔径最不均匀。  相似文献   

13.
14.
Titanium aluminides Ti3Al and TiAl were synthesized by the use of TiH2+Al powder mixtures. Phase transformations occurring upon the decomposition of titanium hydride in vacuum and inert gas and synthesis of titanium aluminides were studied. It was shown that the use of titanium hydride instead of titanium in powder mixtures with aluminum results in a significant activation of diffusion processes, and leads to an accelerated production of single-phase titanium aluminides upon isothermal heating. This is attributable to the small particle size of the charge, high density of defects (including those due to hydrogen-phase hardening) in the titanium and aluminum lattices, and possible reduction of Al2O3 films by atomic hydrogen. The type of atmosphere did not noticeably effect the rate of phase formation, however synthesis in vacuum appears to be more practical since hydrogen is completely removed with simultaneous formation of the aluminides. Due to the fact that aluminum reacted completely with titanium in the solid state, final products close to theoretical densities were obtained without the application of high pressure.  相似文献   

15.
泡沫铝制备与其压缩性能研究   总被引:6,自引:0,他引:6  
采用粉末致密化发泡(PCF)工艺制备了泡沫纯铝,对制备过程及影响孔结构的因素进行了分析.系统研究了压力、发泡温度、发泡时间、发泡剂含量和粒度对泡沫纯铝结构变化的影响规律,用自行设计的软件FoamScan对孔结构进行了描述.得出了试验条件下的优化工艺参数配置.进行了泡沫铝压缩性能测试,通过理论模型、性能测试数据作图对比的方法获得了孔隙率83%~87%泡沫纯铝的屈服强度表达式.确定了泡沫纯铝的制备工艺、结构、性能的相互关系.  相似文献   

16.
粉末烧结法制备开孔泡沫铝压缩性能的研究   总被引:1,自引:0,他引:1  
采用粉末烧结工艺制备开孔泡沫铝并研究了其压缩性能,不同形态的尿素和氯化钠颗粒作为造孔剂使泡沫铝的孔隙度控制在70%。结果表明:粉末烧结法制备的泡沫铝呵以容易地控制孔隙度及孔径的大小,并且孔结构很好地保持了造孔剂的形状。不同的孔结构对泡沫铝的压缩性能具有显著影响,球形孔结构得到了最佳的压缩效果。  相似文献   

17.
The foamability of iron-carbon alloys using the powder metallurgical process route was investigated. Pure iron and carbon powder with an addition of foaming agent were mixed and compacted. The foaming process started during heating the sample as soon as a temperature above the solidus temperature of the iron-carbon alloy was reached. Result of the process is an iron foam with a porosity of up to 60%. It was investigated, how the foaming behaviour is influenced by the parameters of alloy composition and compaction process. Different foaming agents (alkaline earth metal carbonates and metal nitrides) as well as different carbon additions and compacting processes were tested. It can be seen that sort and amount of foaming agent have an unexpected low influence on the expansion process whereas an increasing carbon content supports the expansion significantly. The use of different compacting processes has only little influence on the expansion itself, but highly effects both the pore distribution and homogeneity. The poor effect of the foaming agent cannot be satisfactorily explained. Investigations of a possibly premature gas emission or of a not gas-tight inclusion of the foaming agent do not show clear results. The support of the expansion by carbon additions can be attributed to the formation of CO-gas by the Vacher-Hamilton law during simultaneous formation of the liquid Fe-FeC-eutectic phase. The more inhomogeneous pore structure of iron foams caused by the use of hot-or hot isostatically pressed semi-finished products can be traced back to a higher internal gas pressure in the sample which results in a burst of the microstructure of the semi-finished product.  相似文献   

18.
Lotus-type porous aluminum with slender directional pores is fabricated via a continuous casting technique in pressurized hydrogen or a mixed gas containing hydrogen and argon. The influence of solidification conditions such as hydrogen partial pressure, solidification velocity, temperature gradient, and melt temperature on the porosity and pore size is investigated. The porosity and pore size increase upon increasing the hydrogen partial pressure or the melt temperature, whereas the porosity and pore size decrease upon increasing the solidification velocity or the temperature gradient. Furthermore, the mechanism of pore formation in lotus aluminum is examined based on the results of an improved model of hydrogen mass balance in the solidification front, which was originally proposed by Yamamura et al. The results from the present model agree with the experimental results. We conclude that the diffusion of hydrogen rejected in the solidified aluminum near the solid/liquid interface is the most important factor for pore formation because the difference in hydrogen solubility between solid and liquid aluminum is very small.  相似文献   

19.
The mechanisms of in-situ synthesis of an Al-Ti-C grain-refiner master alloy, prepared by adding a powder mixture of potassium titanium fluoride and carbon into an aluminum melt, have been systematically studied. It was found that vigorous reactions occurred at the initial stage of reaction and then slowed down. After about 20 minutes, the reactions, which led the formation of blocky titanium aluminides and submicron titanium carbides in the aluminum matrix, appeared to reach completion. Potassium titanium fluoride reacted with aluminum and carbon at 724 °C and 736 °C, respectively, resulting in the formation of titanium aluminides and titanium carbides in the aluminum matrix as well as in the formation of a low-melting-point slag of binary potassium aluminofluorides. The reaction between potassium titanium fluoride and carbon is believed to be the predominant mechanism in the synthesis of TiC by this method.  相似文献   

20.

Centrifugal force was used to produce open-cell Zn-22Al-2Cu alloy foams by the replication method. Three different sizes (0.50, 0.69, and 0.95 mm) of NaCl spherical particles were used as space holders. A relatively low infiltration pressure was required to infiltrate completely the liquid metal into the three pore sizes, and it was determined based on the centrifugation system parameters. The infiltration pressure required was decreased when the diameter of the particle was increased. The porosity of the foam was increased from 58 to 63 pct, when the pore size was increased from 0.50 to 0.95 mm, while the relative density was decreased from 0.42 to 0.36. The NaCl preform was preheated to avoid the freezing and to keep the rheological properties of the melt. The centrifugal-replication method is a suitable technique for the fabrication of open-cell Zn-Al-Cu alloy foams with small pore size. The compressive mechanical properties of the open-cell Zn-22Al-2Cu foams increased when the pore size decreased.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号