首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
A technique was developed and tested to measure the local thickness of a droplet or a liquid film on a surface of an opaque or thick single transparent plate by an interference fringe pattern that was easily formed by reflecting laser lights. Monochromatic epi-illumination through an objective lens of a conventional microscope was provided by a 5 mW or 300 mW laser and a filter to remove the noise caused by laser speckle. The incremental height difference of the liquid layer between neighboring maxima or minima of fringes was evaluated from the wavelength of the laser light and the refractive index of the liquid. Estimation error of a local inclination angle was discussed using ray tracing under parallel illumination approximation. Droplet profiles evaluated from the interferogram that were obtained by the present fringe method agreed well with those by Laser Focus Displacement Meter. Measurement was made to ensure the usefulness of the present technique. It was made clear that the contact angle of a liquid droplet could be obtained precisely and swiftly, even in small size or small contact angle, and that instantaneous three-dimensional profile of a liquid film on a bubble moving in a microchannel could be measured. The fringe method had sufficient potential to obtain more detailed information about three-dimensional characteristics of liquid film in flows such as the generation, breakdown, and growth of waves and the liquid film on a bubble at the beginning of movement.  相似文献   

2.
A sharp-interface level-set (LS) method is presented for computing particle motion in an evaporating microdroplet. The LS formulation for incompressible two-phase flow is extended to include the effects of evaporation, mass transfer, heat transfer, and dynamic contact angles. A numerical technique for the conservation of particle concentration is incorporated into the LS method, and calculation procedures are also developed and tested for reducing the numerical errors caused in the computation of interface curvature and liquid–gas velocity jump. The improved LS method is applied to the simulation of particle distribution in microdroplet evaporation on a solid surface.  相似文献   

3.
In this paper we study the evaporation of a drop on a rough polytetrafluoroethylene substrate. A water-ethanol binary drop of few millimetres size is evaporating in a controlled pressure environment. An experimental set up is built to investigate the influence of ethanol concentration and drop profile on the evaporation rate. The measurements were performed using an optical technique. This latter allows measurements of the dynamic contact angle, the drop volume and the base width as function of time. For pure substances (water, ethanol) the evaporation rate and the drop profile are found to have a monotonous evolution with time. For binary water-ethanol mixtures, three stages corresponding to different wetting behaviours are identified. The evaporation rate measurement indicates that the more volatile component evaporates entirely in the first stage while in the last stage the less volatile component is dominantly evaporating. The behaviour of the wetting angle is correlated with the volume of the drop and the ethanol concentration. It was clearly demonstrated that at high ethanol concentration (75%) the wetting contact angle of the drop matches the behaviour of pure ethanol during the first stage and tends to follow the behaviour of pure water during the third stage. This suggests that, as the ethanol evaporates in the first stage it diffuses to the interface where it dictates the surface tension properties and hence the wetting contact angle. Towards the end of the droplet lifetime, the wetting contact angle jumps to join the behaviour of pure water.  相似文献   

4.
A comprehensive experimental and numerical investigation on water microdroplet impingement and evaporation is presented from the standpoint of phase-change cooling technologies. The study investigates microdroplet impact and evaporation on a laser heated surface, outlining the experimental and numerical conditions necessary to quantify the interfacial thermal conductance (G) of liquid-metal interfaces during two-phase flow. To do this, continuum-level numerical simulations are conducted in parallel with experimental measurements facilitating high-speed photography and in-situ time-domain thermoreflectance (TDTR). During microdroplet evaporation on laser heated Al thin-films at room temperature, an effective interfacial thermal conductance of Geff = 6.4 ± 0.4 MW/m2 is measured with TDTR. This effective interfacial thermal conductance (Geff) is interpreted as the high-frequency (ac) interfacial heat transfer coefficient measured at the microdroplet/Al interface. Also on a laser heated surface, fractal-like condensation patterns form on the Al surface surrounding the evaporating microdroplet. This is due to the temperature gradient in the Al surface layer and cyclic vapor/air convection patterns outside the contact line. Laser heating, however, does not significantly increase the evaporation rate beyond that expected for microdroplet evaporation on isothermal Al thin-film surfaces.  相似文献   

5.
A numerical investigation of neutrally hydrophobic water microdroplet evaporation on a flat, isothermal surface was conducted. The axisymmetric time-dependent governing equations of continuity, momentum, energy, and species were solved using FLUENT. The numerical model includes temperature- and species-dependent thermodynamic and transport properties. The explicit volume of fluid (VOF) model with dynamic meshing and variable-time stepping was utilized. The continuum surface force (CSF), the gravitational body force, and Schrage's molecular kinetic-based evaporation model were included in the governing equations. A novel approach was used to model de-pinning by using Blake's molecular kinetic-based contact line motion theory. Experimentally, droplet evaporation data was acquired with a standard dispensing/imaging system and high-speed photography. There is good agreement between the measured and predicted dimensionless droplet profile as characterized by the droplet volume (∀d/∀0), dynamic contact angle (θ/θ0), contact radius (R/R0), and apex height (H/H0) when the de-pinned microdroplet numerical model is used. The de-pinning time (td) and volume (∀d/∀0) are controlled by both the de-pinning parameters (Kw and λ = n− 2) and the accommodation coefficient (ε). On the other hand, the de-pinning contact angle (θd0) and height (Hd/H0) are independent of ε.  相似文献   

6.
Droplet evaporation widely exists in the daily life and industrial production. In most of previous experimental studies, the evaporation of sessile droplets was conducted under a constant substrate temperature condition. However, drops often evaporating on a heating surface under a constant heat flux condition in many practical applications. In this paper, we have carried out an experiment on sessile 3 μl DI water droplets evaporated on hydrophilic and hydrophobic heating surfaces under constant heat flux in the range from 1153 W/m2 to 6919 W/m2. A high-speed camera was used to record the changing shapes of two sessile droplets on a hydrophilic and a hydrophobic heating surface placed side by side. The droplet height, dynamic contact angle, droplet contact diameter, evaporation mode and evaporation rate are presented.  相似文献   

7.
The present study investigates experimentally the effects of thermal properties of the hot surface and droplet characteristics on the droplet evaporation. Cylindrical blocks made of Stainless Steel, Aluminum and Brass with different degrees of surface roughness were used. The droplet diameter and velocity were controlled independently. The behavior of droplet during the collision with hot surface was observed with a high-speed camera. The results presented the effect of the thermal properties of the hot surface, droplet Weber number, droplet velocity, droplet size, hot surface conditions; surface superheat and degree of surface roughness on the solid–liquid contact time and the maximum spread of droplet over the surface. Empirical correlations have been deduced describing the relationship between the hydrodynamic characteristics of an individual droplet impinging on a heated surface and concealing the affecting parameters in such process. Also, the comparison between the current results and the results due to others investigators shows good agreement in which the difference between them ranged from 5% to 25%.  相似文献   

8.
The unsteady heat and mass transfer of sprayed water in the flue gas is modelled according to the iterative method of numerical research. The complex “droplet problem” covers the analysis of combined energy transfer in a semitransparent droplet, also combined heating and evaporation of the droplet. The surface temperature of the evaporating droplet is determined, at which the balance of energy fluxes taken to the surface and taken from the surface is reached. The thermal state mode of an evaporating droplet depends on the way of droplet heating as well. The change of thermal state and phase transformations parameters of water droplets warming in flue gas is analysed in the universal time scale. The initial evaluation of heat energy accumulated in exhaust flue gas utilization by water injection is presented.  相似文献   

9.
During the investigation on atomization and evaporation of water in steam spray coolers a thermal measuring device has been developed for droplet size measurement. This device consists of a thermocouple on which the droplet evaporates by heat removal from the thermocouple material near the hot junction; it is called: droplet detecting thermocouple (d.d.t.). The principle of a d.d.t. is based on utilization of the correlation between droplet radius and temperature signal of the d.d.t., caused by the evaporating droplet. The d.d.t. proved to be a dependable device for continuous detecting and measurement of water droplets both in air and steam flows, even at high pressures and temperatures. In this paper a theoretical analysis of the d.d.t. behaviour is given together with experimental data of d.d.ts. for water droplets with radii between 3 and 1188 μm. Good agreement between experimental data and theoretically predicted results has been reached.  相似文献   

10.
Water management is one of the critical issues in proton exchange membrane fuel cells, and proper water management requires effective removal of liquid water generated in the cathode catalyst layer, typically in the form of droplets through cathode gas stream in the cathode flow channel. It has been reported that a hydrophilic channel sidewall with a hydrophobic membrane electrode assembly (MEA) surface would have less chance for water accumulation on the MEA surface. Therefore, a comprehensive study on the effect of surface wettability properties on water droplet movement in flow channels has been conducted numerically. In this study, the water droplet movements in a straight flow channel with a wide range of hydrophilic surface properties and effects of inlet air velocities are analyzed by using three‐dimensional computational fluid dynamics method coupled with the volume‐of‐fluid (VOF) method for liquid–gas interface tracking. The results show that the water droplet movement is greatly affected by the channel surface wettability and air flow conditions. With low contact angle, droplet motion is slow due to more liquid–wall contact area. With high air flow velocities, increasing the contact angle of the channel surface results in faster liquid water removal due to lesser liquid–wall contact area. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
This work investigates the impingement of a liquid microdroplet onto a glass substrate at different temperatures. A finite-element model is applied to simulate the transient fluid dynamics and heat transfer during the process. Results for impingement under both isothermal and non-isothermal conditions are presented for four liquids: isopropanol, water, dielectric fluid (FC-72) and eutectic tin–lead solder (63Sn–37Pb). The objective of the work is to select liquids for a combined numerical and experimental study involving a high resolution, laser-based interfacial temperature measurement to measure interfacial heat transfer during microdroplet deposition. Applications include spray cooling, micro-manufacturing and coating processes, and electronics packaging. The initial droplet diameter and impact velocity are 80 μm and 5 m/s, respectively. For isothermal impact, our simulations with water and isopropanol show very good agreement with experiments. The magnitude and rates of spreading for all four liquids are shown and compared. For non-isothermal impacts, the transient drop and substrate temperatures are expressed in a non-dimensional way. The influence of imperfect thermal contact at the interface between the drop and the substrate is assessed for a realistic range of interfacial Biot numbers. We discuss the coupled influence of interfacial Biot numbers and hydrodynamics on the initiation of phase change.  相似文献   

12.
A level-set method is presented for computation of microdroplet evaporation including not only the effects of heat and mass transfer, phase change and contact line dynamics but also the Marangoni effect, which is a key parameter affecting the internal flow of the droplet and the particle deposition pattern. A sharp-interface formulation of the Marangoni force is derived and tested for two-phase Marangoni convection in a cavity. The computed results show good convergence in both the liquid and gas regions and are in excellent agreement with the analytical solutions. The level-set formulation is applied to microdroplet evaporation on a solid surface to investigate the Marangoni effect.  相似文献   

13.
The dynamic behavior of liquid water emerging from the gas diffusion layer (GDL) into the gas flow channel of a polymer electrolyte membrane fuel cell (PEMFC) is modeled by considering a 1000 μm long air flow microchannel with a 250 μm × 250 μm square cross section and having a pore on the GDL surface through which water emerges with prescribed flow rates. The transient three-dimensional two-phase flow is solved using Computational fluid dynamics in conjunction with a volume of fluid method. Simulations of the processes of water droplet emergence, growth, deformation and detachment are performed to explicitly track the evolution of the liquid–gas interface, and to characterize the dynamics of a water droplet subjected to air flow in the bulk of the gas channel in terms of departure diameter, flow resistance coefficient, water saturation, and water coverage ratio. Parametric simulations including the effects of air flow velocity, water injection velocity, and dimensions of the pore are performed with a particular focus on the effect of the hydrophobicity of the GDL surface while the static contact angles of the other channel walls are set to 45°. The wettability of the microchannel surface is shown to have a major impact on the dynamics of the water droplet, with a droplet splitting more readily and convecting rapidly on a hydrophobic surface, while for a hydrophilic surface there is a tendency for spreading and film flow formation. The hydrophilic side walls of the microchannel appear to provide some benefit by lifting the attached water from the GDL surface, thus freeing the GDL-flow channel interface for improved mass transfer of the reactant. Higher air inlet velocities are shown to reduce water coverage of the GDL surface. Lower water injection velocities as well as smaller pore sizes result in earlier departure of water droplets and lower water volume fraction in the microchannel.  相似文献   

14.
The chemical diversity of the components in bio-oil has a significant effect on its evaporation. The low boiling point compounds, such as simple acids and water, evaporate away from the surface at a faster rate than the internal diffusion. As a result a significant proportion still remains in the droplet core late in the evaporation process. As the droplet temperature increases, these trapped chemicals, in the centre of the droplet, can reach a sufficiently high temperature to cause them to vapourise resulting in rapid expansions, which can fracture the droplet. In this study a numerical model of a stationary, spherically symmetric evaporating bio-oil droplet, in a hot ambient atmosphere, is used to investigate the effect of the rate of diffusion on the evaporation process.  相似文献   

15.
When heavy fuel oil sprayed in droplets burns in water heating boilers, there are cases when the zones of incomplete combustion are present. The volatile compounds and tar contained in the droplets burn out there and the carbon starts to accumulate on the pipes of the screen. Combustion of a fuel droplet on a solid surface is less investigated than that of the droplet falling down in hot air. In this work, the burnout of a droplet of a heavy fuel oil has been measured on a hot surface whose temperature varies in the interval from 400 to 700 °C. Times of evaporation of volatile compounds and burnout of the resulting carbon residue were measured. Changes of the form of the carbon residue depending on the surface temperature were recorded. Ceramic, quartz and stainless steel surfaces were used. The effect of surface roughness was additionally examined. In the case of a droplet of the heavy fuel oil dropped on a hot surface, heat transfer into the droplet is very sudden. The surface wetting condition is important, as it determines evaporation and boiling. Another difference from a freely falling droplet is oxidation of the pure coke because the oxygen diffusion is possible only from one side of the space.  相似文献   

16.
Small-scale experiments have been conducted to investigate the triggering mechanism of vapor explosions. In order to attain good repeatability and visibility, a smooth round water droplet was impinged onto a molten alloy surface. This configuration suppresses premixing events prior to triggering.Six molten metal and alloys were used as the pool liquid. The lower limit of the contact temperature in the vapor explosion region closely agrees with the spontaneous bubble nucleation temperature of water. The upper limit of the initial molten alloy temperature decreases when an oxide layer forms on the surface causing an increase of the emissivity of thermal radiation that has a stabilizing effect on the vapor film. When an oxide layer was formed on the surface, a water droplet was occasionally entrapped into a molten alloy dome, since the oxide layer prevents the droplet from evaporating coherently. The vapor explosion region obtained for the mirror surface is a conservative estimate, since that for the oxide surface fell into the internal region of the vapor explosion for the mirror surface.  相似文献   

17.
The temperature field within evaporating ethanol droplets is investigated, relying on the two-color laser induced fluorescence (LIF) measurement technique and on a Direct Numerical Simulation (DNS). The configuration studied corresponds to a monodisperse droplet stream in a diffusion flame sustained by the droplet vapor. An experimental probe volume, small compared to the droplet size, is used to characterize the temperature field within the droplets, whereas DNS takes into account key aspects of the droplet heating and evaporation such as the non-uniform and transient stress, and the mass and heat transfer coefficients at the droplet surface. These investigations reveal that the frictional stresses are strongly reduced due to the small spacing between the droplets. They also show that the Marangoni effect has a significant influence on the internal motion and hence on the internal temperature field.  相似文献   

18.
在气液两相流VOF(volume of fluid,VOF)模型的基础上耦合CSF(continuum surface force,CSF)表面张力模型,建立了高温平板上的铺展液滴与高温空气中悬浮液滴蒸发过程中内部非稳态流动模型,对液滴蒸发过程中内部非稳态流动进行了研究。基于相变理论,采用用户自定义函数将流体相变模型加入非稳态流动模型中进行耦合计算,获得了高温平板上的铺展液滴与高温空气中悬浮液滴蒸发过程中的内部流动及变化过程。液滴蒸发过程中非稳态内部流动由液滴表面的温度梯度引发,Marangoni流动在液滴内部形成的时间非常短,流体从液滴表面高温区域流向低温区域。计算结果表明:高温平板上随着液滴蒸发的进行,液滴内部一直保持两个对称的涡流,Marangoni流动比较稳定;高温空气环境中随着液滴蒸发的进行,液滴内部四个涡流逐渐转变成两个对称的涡流;液滴内部温度分布因Marangoni流动加强传热而变得均匀,同时由于温度分布变得均匀,Marangoni流动被削弱。  相似文献   

19.
The droplet dynamics inside a sinusoidal channel for PEMFC (polymer electrolyte membrane fuel cell) are investigated numerically using the VOF (volume of fluid) method. This study is done for three geometrically different channels corresponding to various non-dimensional sinusoidal distances (50, 25, 12.5, 16.7 and 8.3). The effects of key parameters like sinusoidal distance (pitch-amplitude ratio), radius of curvature and wall contact angle on the droplet removal in the flow channel are investigated. The performance of the sinusoidal as compared to the conventional channel is studied based on droplet removal rate and GDL (gas diffusion layer) surface water coverage. It is found that the droplet removal rate increases with increasing sinusoidal distance and wall contact angle. In addition, decrease in the sinusoidal distance results in a significant reduction in the average droplet speed and gas diffusion layer surface water coverage. It was also observed that broken bits of the droplet stuck on the wall corners accrued with a reduction in the wall contact angle. The curvy nature of the side walls generally induces a secondary flow effect which would be most beneficial in enhanced reactant diffusion and cell performance. It is suggested that the sinusoidal distance and wall contact angle effect on two-phase flow in a channel is highly significant. As such, needs to be considered for water management in sinusoidal channels.  相似文献   

20.
In this work, side view images of liquid–gas–solid interfaces are observed during the evaporation of liquid water droplets on various commercially available untreated gas diffusion layers (GDLs). The change in contact diameter as a function of evaporative volume loss is measured to quantify the unpinning rates of micro-sized droplets. This contact diameter pinning behaviour during evaporation is correlated to the material topography, which is quantified through profilometry measurements. The carbon fibre paper with the smallest average roughness (15 μm) exhibits the strongest degree of pinning (unpinning at a rate of 0.13 mm/μL). Higher average surface roughnesses for felt (30 μm) and cloth yarn (32 μm) result in higher unpinning rates, 0.21 mm/μL and 0.19 mm/μL, respectively. These results indicate that common GDL materials exhibit Cassie–Baxter wetting behaviour, and reduced GDL roughness promotes droplet pinning. The material-specific droplet contact diameter progression should be considered during GDL selection for polymer electrolyte membrane (PEM) fuel cells. This work provides insight into the effect of GDL material properties on gas channel water management, as water droplets are expected to experience similar pinning to that observed in this work within the cathode gas channels of a PEM fuel cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号