首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 120 毫秒
1.
The possibility of producing nonequilibrium amorphous and crystalline phases in the Cu-W system is of interest because, under equilibrium conditions, no mutual solubility is expected between Cu and W. Triode sputtered coatings (45 to 150 μm thick, produced at deposition rates between 20 and 150 Å/s) consisted of amorphous and metastable crystalline phases. The latter remained decomposition-resistant on heating to various temperatures between 340 °C and 600 °C (the maximum temperature of exposure). The amorphous phase in such coatings crystallized on heating into a metastable body-centered cubic (bcc) phase, and the crystallization temperatureT x was found to decrease across the phase diagram from 450 °C to 340 °C as the percentage of W increased from 26 to 60 at. pct. Samples containing amorphous phase regions, when subjected to heating between 150 °C and 250 °C, showed an unusual rapid precipitation of Cu at the sample surface, indicating an easy diffusion of the Cu component. This occurred without crystallization of the remaining slightly tungsten-enriched amorphous matrix. Microhardness measurements in sputtered two-phase amorphous and bcc regions have shown that in alloys of the same composition, the amorphous phase was always softer than the bcc solid solution phase. X-ray, microprobe, and optical evidence suggests that the amorphous films deposited at very low temperatures(i.e., at liquid N2) may subsequently undergo a phase separation upon heating to room temperature and prior to crystallization. Earlier work and present studies of vapordeposited alloys in this system confirm that the observed phases and microstructures can be related to free energy trends estimated from thermodynamic considerations and to specific deposition parameters, such as the substrate temperature and the deposition rates, which influence the kinetics.  相似文献   

2.
The structure and mechanical properties of nanocrystalline intermetallic phase dispersed amorphous matrix composite prepared by hot isostatic pressing (HIP) of mechanically alloyed Al65Cu20Ti15 amorphous powder in the temperature range 573 K to 873 K (300 °C to 600 °C) with 1.2 GPa pressure were studied. Phase identification by X-ray diffraction (XRD) and microstructural investigation by transmission electron microscopy confirmed that sintering in this temperature range led to partial crystallization of the amorphous powder. The microstructures of the consolidated composites were found to have nanocrystalline intermetallic precipitates of Al5CuTi2, Al3Ti, AlCu, Al2Cu, and Al4Cu9 dispersed in amorphous matrix. An optimum combination of density (3.73 Mg/m3), hardness (8.96 GPa), compressive strength (1650 MPa), shear strength (850 MPa), and Young’s modulus (182 GPa) were obtained in the composite hot isostatically pressed (“hipped”) at 773 K (500 °C). Furthermore, these results were compared with those from earlier studies based on conventional sintering (CCS), high pressure sintering (HPS), and pulse plasma sintering (PPS). HIP appears to be the most preferred process for achieving an optimum combination of density and mechanical properties in amorphous-nanocrystalline intermetallic composites at temperatures ≤773 K (500 °C), while HPS is most suited for bulk amorphous alloys. Both density and volume fraction of intermetallic dispersoids were found to influence the mechanical properties of the composites.  相似文献   

3.
Amorphous ultrafine powders in (Fe, Co, Ni)-B binary systems were prepared in different reduction conditions of metal ions in an aqueous solution by use of KBH4, with the aim of clarifying the effect of reaction conditions on the composition, thermal stability, and magnetic properties of the resultant amorphous powders. As the mol ratio of KBH4 to metal ions decreases, the structure of the ultrafine powders changes from amorphous to crystalline phase. The morphology of these powders is in a nearly spherical shape with a particle size of about 20 nm for the amorphous phase and changes to the chain-like or net-like shape for the crystalline phase. The B content in the Fe-B amorphous powder decreases with a decrease of the ratio of KBH4 to metal ions, and the powder size decreases with an increase of the reduction temperature.  相似文献   

4.
The present work compares the properties of the Cu–TiB2 composites prepared by varying the mechanical milling conditions. The Cu–TiB2 composites were processed using Cu–TiB2 powders combined milling, a powder mixture consisting of separately milled Cu & TiB2 and a powder mixture prepared by the combination of separate and combined milling. The hardness and flexural strength of the combined milled powders were found to be maximum, despite of their lower sintered density. The separately milled powders achieved excellent electrical properties combined with moderate hardness and flexural strength. The properties of composites processed using the combination of separate and combined milling laid in between the two conditions of combined and separate milling.  相似文献   

5.
The effects of mixed mode loading on the fracture behavior of Zr-based bulk metallic glasses (BMGs) (Vitreloy I and Vitreloy 106) were investigated. Mixed mode I/II and mixed mode I/III fracture conditions were tested using both notched and fatigue-precracked specimens. Fully amorphous samples exhibited tremendous increases in fracture energy with the application of mixed mode loading, while partially crystalline samples exhibited more modest increases. A comparison to the behavior of other material systems (e.g., polymers, ceramics, crystalline metals, and composites) illustrates the tremendous increase in fracture energy exhibited by these BMGs under mixed mode loading conditions.  相似文献   

6.
Using a single-mode 915-MHz microwave applicator equipped with a ceramic pressing unit, we processed the gas-atomized Cu50Zr45Al5 metallic glassy alloy powder blended with Sn powder of various contents in a separated magnetic (H-) field maximum. The blended powders were well heated in H-field. Bulk Cu50Zr45Al5 metallic glass matrix composites were produced with an applied pressure of 5 MPa. As a secondary phase, the Sn particle promoted the densification of the sintered samples.  相似文献   

7.
In this study, gas-atomized amorphous Zr58.5Nb2.8Cu15.6Ni12.8Al10.3 (Vitreloy 106a) containing 1280 ppmw oxygen was consolidated by equal-channel angular extrusion (ECAE). The powder was vacuum encapsulated in copper cans and subjected to one extrusion pass in the temperature region above the glass transition temperature (T g) and below the crystallization temperature (T x). The effects of extrusion temperature and the extrusion rate on microstructure, thermal stability, hardness, and compressive strength are investigated. Compression fracture surfaces were examined to determine the deformation mechanisms. The consolidates in which the time-temperature-transformation (TTT) boundary was not crossed during processing exhibit differential scanning calorimetry (DSC) patterns similar to the initial powder, with a slight decrease in T x. Compressive strengths of about 1.6 GPa are recorded in the consolidates processed at 30 °C and 40 °C below T x, which is close to what is observed in cast counterparts. The fracture surfaces exhibit vein patterns covering up to 90 pct of the surface area in some samples, which are characteristic of glassy material fracture. The slight decrease in T x after consolidation is attributed to thermal-history-dependent short-range order and formation of nanocrystalline islands. The present results show that ECAE is successful in consolidation of metallic glass powder. This processing avenue opens a new opportunity to fabricate bulk metallic glasses (BMGs) with dimensions that may be impossible to achieve by casting methods.  相似文献   

8.
In the present paper bulk glass forming behaviour of some of Zr based Ni, Cu, Al and Ti bearing alloys has been investigated. Examination of the as solidified microstructure of these alloys in the partially crystalline state has shown that the predominance presence of the Zr2Ni or its derivatives phases as the phases competing with glass formation whereas in the fully amorphous microstructure, quenched-in nuclei and the atomic short range order existing in the amorphous phase were observed. The aim of the microstructural examinations of the fully amorphous phase was to ascertain the nature and morphology of the quench-in nuclei. In the partially crystalline microstructures, study of the crystalline phases competing with glass formation has helped in better understanding of the solidification process during BMG formation. The kinetics of crystallization of the as solidified Zr based bulk metallic glasses were studied by differential scanning calorimetry (DSC) and crystallized microstructures were examined by conventional and high-resolution electron microscopy. The activation energies of crystallization and the Avrami exponent have been evaluated. The Avrami exponent values have been rationalized in terms of the observed nucleation and growth behaviour of the phases forming on crystallisation. Conditions of crystallization leading to the formation of nanocrystals have been identified.  相似文献   

9.
The alloying behavior of Al-25 at. pct V-12.5 at. pct M (M = Cu, Ni, Mn) by planetary ball milling of elemental powders hours as been investigated in this study. In Al3V binary system, an amorphous phase was produced after 6 hours and the amorphous phase was mechanically crystallized after 20 hours. The large difference in the diffusivities between Al and V atoms in Al matrix results in the formation of the amorphous phase when the homogeneous distribution of all the elements in a powder was achieved at 6 hours. According to thermal analyses, the amorphous phase in the binary Al3V was crystallized at 350 °C. The addition of ternary elements (Cu, Ni, Mn) increased the activation energy for the crystallization to D022 phase by interfering with the diffusion process. Therefore, ternary element addition improved the thermal stability of the amorphous structures. The amorphous phase in the 12.5 at. pct Ni added Al3V was crystallized to D022 phase at 540 °C. The mechanical crystallization of the amorphous phase in the ternary element-added Al-V system either occurred later or was not observed during ball milling up to 100 hours. It is thought that the amorphous intermetallic compacts could be produced more easily in ternary element-added alloys by using an advanced consolidation method.  相似文献   

10.
A variety of experimental techniques have been used to study a WC-12 pct Co powder and the coatings produced by high velocity oxygen fuel (HVOF) spraying of the powder onto a steel substrate. Many of the structural characteristics of the powder were also found in the coating. However, when the metallic matrix of the powder was melted during thermal spraying, the carbides were partially dissolved and a very heterogeneous liquid phase was produced in which the W/C ratio varied from about 1 to 4. These variations have been linked with oxidation of the liquid phase during spraying. The factors influencing the formation of W2C in the coating have been identified as (1) an in situ transformation of WC into W2C maintaining the original WC faceted morphology and (2) the precipitation of W2C from the W-rich liquid phase matrix as the coating cools. A cobalt containing carbide of the M6C-M12C type has also precipitated from the liquid phase when the W/C and W/Co ratios were high. deceased.  相似文献   

11.
The structure and main physicochemical properties of dysprosium titanate powders prepared by mechanochemical synthesis from the low-temperature modification of titanium oxide and modification of dysprosium oxide are investigated applying X-ray phase analysis (XPA), scanning electron microscopy, Raman spectroscopy (Raman spectra), transmission electron microscopy, and chemical analysis. It is established based on XPA that the initial oxides completely transform into X-ray amorphous dysprosium titanate (Dy2TiO5) during the mechanochemical treatment of a mixture for 30–60 min. A microelectron diffraction pattern of Dy2TiO5 powders prepared by mechanosynthesis has a ring structure characteristic of the X-ray amorphous phase with a certain amount of inclusions of a crystalline phase. The dysprosium titanate powder fabricated by induction melting possesses the regular cubic crystalline lattice with a parameter of 3.4 Å.  相似文献   

12.
The microstructure evolution in the course of crystallization of a splat-quenched Fe73,5Si13.5B9Nb3Cu1 amorphous alloy was investigated by atom probe field ion microscopy (APFIM) and high resolution transmission electron microscopy (HRTEM). All the alloying elements were found to be distributed homogeneously as an amorphous solid solution in the as-quenched state. At an initial stage of annealing, a concentration fluctuation of Cu was found to occur. Cu formed clusters of a few nanometer diameter and their composition was found to be approximately 30 at.% Cu at the beginning. In the later stage, a b.c.c. FeSi solid solution and the B and Nb enriched amorphous phase with the smaller Si content were found to coexist. In addition to these two phases, Cu enriched particles containing approximately 60 at.% Cu were found to be present in the intergranular regions, although we were not successful yet to determine whether this was a crystalline or amorphous phase. Based on these observations, we discuss the crystallization process of this alloy at 550°C which leads to the emergence of excellent soft magnetic properties.  相似文献   

13.
14.
W-Cu micro-powder mixtures usually have poor sinterability due to the relatively low solubility of W in both solid and liquid Cu. In fabricating W-Cu composites, an electroless copper plating process is often used to coat Cu on the W particle surface prior to the sintering process. Due to their small size W particles tend to agglomerate during the plating process, hence the individual particle may not be properly coated with Cu. In this study, ultrasonic vibration is applied in the electroless plating process to break up the agglomerations and restrain the powders from gathering, ensuring a uniform deposition of the Cu on individual W particle. W-Cu composite samples containing pure Cu and 6, 9 and 12 wt-% of Cu-coated W particles, respectively, are fabricated using a standard powder metallurgy technique. It is shown that the application of ultrasonic vibration in the activation and deposition steps of the electroless copper plating process prevents W powder agglomeration and ensures that each W particle is coated with Cu. As a result, the mechanical properties of the W-Cu composites are significantly improved. It is found that the optimal tensile strength and yield strength are obtained using a W reinforcement phase content of 9 wt-%.  相似文献   

15.
Amorphous solid-solution Cu75Hf20Dy05, which undergoes devitrification without changing composition either locally or globally, was used to examine the effects of structural ordering on corrosion properties in the absence of any accompanying chemical partitioning. Melt spun amorphous Cu75Hf20Dy05 undergoes single-phase devitrification to a Cu51Hf14 phase. The difference in corrosion behavior between these two structures was explored in hydrofluoric acid solutions where preferential dissolution of hafnium occurred. Preferential Hf dissolution occurred more readily in the amorphous alloy compared with its crystalline counterpart. Remaining copper reorganized to form a face-centered cubic (fcc) nanostructure in both conditions, but this process occurred quickly in the amorphous state and more slowly in the crystalline variant. A uniform, nanoporous Cu sponge structure, with a pore diameter of approximately 10?nm, formed after dissolution in the amorphous state. A less uniform, nanoporous structure developed more slowly when occurring from the crystalline state. These differences were traced to the effects of ordering on both dissolution and surface diffusion.  相似文献   

16.
《粉末冶金学》2013,56(3):254-265
Abstract

Tungsten based W–1C and W–2B4C–1C (wt-%) powders synthesised by mechanical alloying (MA) for milling durations of 10, 20 and 30 h, in wet (ethanol) and dry conditions, were characterised. X-ray fluorescence spectroscopy investigations revealed Co contamination which increased with increasing milling time during wet milling. X-ray diffraction investigations revealed the presence of W and WC phases in all powders, Co3C intermetallic in the wet milled W–1C powders and W2B intermetallic phase in both wet and dry milled W–2B4C–1C powders. As blended and MA processed powders were consolidated into green compacts by uniaxial cold pressing at 500 MPa and solid phase sintered at 1680°C under hydrogen and argon atmospheres for 1 h. X-ray diffraction investigations revealed the presence of W2C intermetallic phase in sintered composites produced from both wet and dry milled W–1C powders and the W2B intermetallic phase in sintered material from the wet milled W–2B4C–1C powder. Sintered composites from wet milled powders showed relative densities >91%, with the maximum density of 99·5% measured for the sintered 30 h wet milled W–2B4C–1C composites. Microhardness values for the wet milled W–1C and W–2B4C–1C composites were 2–2·5 times higher than those for dry milled composite powders. A maximum hardness value of 23·7±2·1 GPa was measured for the sintered W–2B4C–1C composite wet milled for 20 h.  相似文献   

17.
Gd-based bulk metallic glass has drawn strong attention because of its large magnetic entropy changes. Thermal stability of metallic glass is a very important issue for its application. In the paper, crystallization behavior of Gd53Al24Co20Zr3 bulk metallic glass was investigated using non-isothermal differential scanning calorimetric (DSC) technique. Attention was given to the analytic details. The crystallized volume fractions as a function of temperature were derived from the DSC signals, where heat capacity change between amorphous phase and crystalline phase was considered. The local activation energies at different crystallized volume fraction were estimated using Doyle-Ozawa and Agrawal methods. The results suggested that the Doyle-Ozawa equation was appropriate to get local activation energy due to its simplicity and accuracy. The local activation energy depended on the crystallized volume fraction. Function reflecting crystallization mechanism was also deduced. The crystallization mechanism of the Gd-based bulk metallic glass was discussed.  相似文献   

18.
Abstract

Silicon carbide reinforced copper matrix composites containing 50–80 vol.-%SiCp were fabricated by hot pressing copper coated SiCp powder. The results show that the densification, thermal expansion coefficients, flexural strength, and thermal conductivity of Cu/SiCp composites reinforced by electroless copper plating and their corrosion resistance in 5%NaCl solution are better than those without electroless plating. Physical properties and flexural strength of the composites decrease with an increase in SiCp content, whereas the corrosion resistance increases with an increase in SiCp volume fraction. By observing the fracture surface after a flexural test, it can be seen there are two types of fracture model: the cracking of Cu/SiCp interface and the pulling out of SiCp particles. The experiment also proved that the bonding strength of the Cu/SiCp interface and the pressure of the hot pressing operation are the two main factors which influence the fracture of these composites.  相似文献   

19.
In this work, Zr53Cu18.7Ni12Al16.3 alloy has been cast into rod samples with different diameters. Glassy composites with various volume fractions of quenched-in crystalline are obtained. Their mechanical behaviors and fracture mechanisms have been investigated upon both quasistatic and dynamic loading. As the volume fraction of crystalline phase increases, the increase in the strain-rate sensitivity exponent could be attributed to the combination of the reduction of the shear band-related deformability and the enhancement of the dislocation-related deformability. These results may shed more insight on optimizing the microstructure and performance of bulk metallic glass composites in the future.  相似文献   

20.
The high yield strength and elastic modulus of metallic glasses suggests they could perform an important role in structural applications. To produce materials with a high strength-to-weight ratio and excellent mechanical energy absorption, it is advantageous to form amorphous alloys as cellular solids. Using the elastic properties of slip cast amorphous Fe45Ni45Mo7B3 ribbons, a metallic glass honeycomb was manufactured with a unique manufacturing approach. First, prototypes were manufactured with a porosity of 97?pct, a cell wall thickness of 0.03?mm, and a cell size of 3?mm. Experimentally measured mechanical properties were reasonably similar to analytical models. This suggests that a three-times improvement in the yield strength along the out-of-plane direction is achievable when compared with crystalline aluminum honeycombs. An analytical model was developed to predict the relative density and the compressive stress (?? 3 * ) in the out-of-plane (X 3) direction of the ??teardrop?? cellular structure. The predictions are validated by initial experimental results and compare well with existing analytical models for hexagonal cellular materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号