首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 859 毫秒
1.
以Ti、Al和B4C为原料,采用真空电弧熔炼的方法制备了含Ti_2AlC-TiB_2增强相的TiAl基复合材料;分析了添加不同含量的Ti_2AlC-TiB_2对复合材料的物相组成、组织结构及力学性能的影响,并探讨了微观组织结构的形成机制。结果表明:Ti_2AlC-TiB_2/TiAl复合材料主要由TiAl、Ti3Al、TiB_2和Ti_2AlC等物相组成,TiB_2和Ti_2AlC分布在层片状的TiAl+Ti3Al基体中;随着原料中B4C含量的增多,复合材料组织中Ti_2AlC-TiB_2含量增多,且TiAl基体的晶粒被明显细化,TiB_2和Ti_2AlC分布于基体晶界或晶内。Ti_2AlC主要为层片状和板条状,尺寸5~15μm,而TiB_2颗粒形态与其含量有关,当Ti_2AlC-TiB_2含量小于20wt%时,TiB_2颗粒呈针棒状,尺寸为0.5~5μm,当Ti_2AlC-TiB_2含量增加到30wt%时,TiB_2颗粒主要呈块状,尺寸为5~20μm。Ti_2AlC由TiC与Ti-Al熔体发生包晶反应生成,Ti_2AlC和TiB_2的形成提高了Ti_2AlC-TiB_2/TiAl复合材料的硬度、塑性和抗压强度。当4Ti+Al+B4C的加入量为10wt%时,复合材料的变形量比纯TiAl提高14%,而抗压强度达到最高值1 591 MPa。Ti_2AlC和TiB_2通过裂纹偏转、颗粒钉扎、拔出等机制对Ti_2AlC-TiB_2/TiAl复合材料起到增强增塑的作用。  相似文献   

2.
采用聚氨酯泡沫为原始骨架,用高频感应加热反应熔渗制备TiC/Ti_3SiC_2泡沫陶瓷,研究了在制备过程中不同阶段泡沫体的Ti含量对其相组成、微区化学成分、显微组织以及抗压缩性能的影响。结果表明,随着泡沫体中Ti含量的增加,在其骨架中柑继生成TiC、Ti_3SiC_2及少量的Ti_5Si_3.骨架的致密度提高,泡沫材料...  相似文献   

3.
本文将单质Ti粉、Si粉和C粉作为反应原料,利用机械合金化-热处理工艺制备高纯度的Ti_3SiC_2陶瓷粉体材料,研究了热处理温度对球磨粉体中Ti_3SiC_2纯度的影响.研究表明:单质混合粉体经过机械合金化可制备出含有TiC、TiSi_2等杂质相的Ti_3SiC_2陶瓷粉体,其中Ti_3SiC_2质量分数为71.5%;对球磨粉体进行热处理真空提纯发现,热处理温度对球磨粉体中的Ti_3SiC_2含量影响较为明显,当热处理温度为950℃时,粉体中Ti_3SiC_2质量分数提升至95%.  相似文献   

4.
利用粉末冶金/放电等离子烧结技术制备了添加Mo、Cu、Ag和Nb的Ti_3SiC_2基复合材料,并察了Ti_3SiC_2/Mo、Ti_3SiC_2/Cu、Ti_3SiC_2/Ag和Ti_3SiC_2/Nb复合材料的相态组成和摩擦学性能。研究表明,金属相的添加会造成Ti_3SiC_2基体不程度的分解,生成TiC、Si和钛硅化合物,其中Mo和Cu与Ti_3SiC_2中化学反应活性较高的Si生成Mo_5Si_3、(Ti_(0.8)Mo_(0.2))Si_2、MoSi_2和Cu3Si等,而Ag和Nb未发生反应,在复合物中以金属单质相存在;四种复合物的摩擦学性能均优于纯Ti_3SiC_2,其中Ti_3SiC_2/Ag和Ti_3SiC_2/Nb复合物的抗磨损性能较好;晶粒拔出脱落造成的磨粒磨损是纯Ti_3SiC_2及其复合材料的主要磨损机制,复合材料中TiC及金属硅化物等硬质相在摩擦过程中定扎了周围的Ti_3SiC_2软基体,抑制了摩擦过程中晶粒的拔出脱落,但多物相并存又使得复合物晶间结合强度降低,导致磨损率提高;复合物中金属单质Ag和Nb的存在起到了一定程度的晶间强化作用;材料转移也是造成复合物磨损率高的一个原因。  相似文献   

5.
超重力下燃烧合成TiB_2-TiC共晶复合陶瓷   总被引:6,自引:0,他引:6       下载免费PDF全文
采用超重力下燃烧合成技术,制备出TiB2-TiC共晶复合陶瓷。XRD、SEM与EDS结果表明,复合陶瓷主要由大量细小的TiB2片晶均匀分布于TiC基体上的共晶组织构成,而富钛ε碳化物(Ti,Cr)C1-x则断续分布于TiC基体间,同时在基体中还孤立分布着少量的、形态不规则的α-Al2O3晶粒或Al2O3-ZrO2共晶团组织。高温化学反应使所有产物均呈液态,且超重力的引入诱发熔体内部Stocks流,从而获得液态Ti-Cr-C-B与液态氧化物的分层熔体,液态Ti-Cr-C-B在远离平衡态下发生共晶反应生成TiB2-TiC共晶复合陶瓷。性能测试表明,随着B4C+Ti+C在燃烧体系中质量分数增加,TiB2-TiC共晶复合陶瓷相对密度和断裂韧性变化不大,分别为97%~99%与6.5~7.1 MPa.m1/2,而维氏硬度与弯曲强度则逐渐增加,最高可达28.6 GPa与615 MPa。  相似文献   

6.
将Ti合金插层引入(Ti+B_4C)反应原料和Ti合金底板之间,研究Ti合金插层厚度变化对超重力反应连接TiB2基陶瓷/Ti-6Al-4V梯度复合材料界面显微组织与力学性能的影响。热力学计算表明:合成反应的绝热温度远超Ti合金的熔点,可以保证不同厚度的Ti合金插层全部熔化。XRD、FESEM及EDS分析结果表明:在陶瓷和Ti合金底板之间形成梯度界面区,且随着Ti合金插层厚度的增加,梯度界面区的厚度也不断增大。自陶瓷基体至Ti合金底板,TiB_2和TiC_(1-x)的体积分数不断减少,而TiB的体积分数先增加而后减少,最终形成以TiB_2、TiC_(1-x)及TiB陶瓷相尺寸和分布为特征的梯度复合结构。而梯度连接区的硬度分布趋势更加平缓,其剪切强度不断提升。  相似文献   

7.
以1Cr18Ni9Ti、Ti-6Al-4V为金属基底,通过在B4C+Ti体系中引入CrO_3+Al铝热剂,调整反应体系绝热温度依次为3 193、3 282、3 290及3 473K,采用超重力场反应连接制备TiB_2-TiC/1Cr18Ni9Ti和TiB_2-TiC/Ti-6Al-4V梯度复合材料,发现随着反应绝热温度升高,陶瓷/金属界面区厚度不仅因金属熔深增加而增大,并且残存于界面上的Al_2O_3夹杂也随之增多。分别对B4C+Al体系与CrO_3+Al铝热剂进行配制、球磨活化、压制成坯并依次填料入坩埚后,发现残存于界面上的Al_2O_3夹杂完全消除,同时发现在TiB_2-TiC/1Cr18Ni9Ti界面上生成三维网络陶瓷/金属梯度复合结构,而在TiB_2-TiC/Ti-6Al-4V界面上形成跨尺度多层次梯度复合结构。  相似文献   

8.
迟静  李敏  王淑峰  吴杰 《复合材料学报》2018,35(9):2503-2511
以尿素为造孔剂,利用自蔓延高温合成技术制备了多孔TiC/FeAl复合材料,主要考察了Ti-C含量(质量分数为15wt%~35wt%)对多孔TiC/FeAl复合材料孔型结构和压缩性能的影响。当Ti-C含量不高于25wt%时,多孔TiC/FeAl复合材料由毫米孔和孔壁微孔组成规则的复合孔型结构。相互连通的毫米孔产生于尿素颗粒的挥发和液相迁移;微孔尺寸为10~50 μm,产生于Fe-Al-Ti-C粉末的自蔓延过程,孔径随Ti-C含量的增加而增大。通过调整尿素的体积分数,多孔TiC/FeAl复合材料的孔隙率可控制在56.64%~85.35%。当Ti-C含量不高于25wt%时,多孔TiC/FeAl复合材料的抗压强度随Ti-C含量的增加而增大。当Ti-C含量高于25wt%时,多孔TiC/FeAl复合材料壁面微孔形状很不规则,且抗压强度下降。孔隙率约为64.3%时,多孔Fe-Al金属间化合物和TiC/FeAl复合材料(Ti-C含量为25wt%)的抗压强度分别为20.03 MPa和66.68 MPa,对应的应变值分别为4.77%和8.21%。另外,多孔TiC/FeAl复合材料的压缩性能可用Gibson-Ashby模型来解释。  相似文献   

9.
采用放电等离子烧结工艺,以Ti,Al,B4C,Tic为原料制备Ti3AlC2/TiB2复合材料.通过X射线衍射分析了从600℃到1 300℃Ti3AlC2/TiB2系统反应过程的相形成规律.用扫描电镜观察了不同温度下试样的显微组织演变.结果表明,在900℃之前,主要的反应是Ti和AJ反应生成Ti-A1金属问化合物,900℃之后,Ti-Al金属问化合物与TiC逐渐生成Ti3AlC2和TiB2相,形成致密Ti3AlC2/TiB2复合材料.  相似文献   

10.
利用热压烧结方法原位合成了TiB2-TiC0.8-SiC复相陶瓷。通过光学显微镜(OM)、X射线衍射分析仪(XRD)和扫描电子显微镜(SEM)对材料物相组成和微观结构进行表征。研究了热压条件下烧结温度对材料物相组成、结构及力学性能的影响。结果表明:烧结温度在1700-1950℃范围内,随着温度的升高,材料的致密度、抗弯强度和断裂韧性都有显著改善。烧结温度为1900℃可得到完全致密的原位合成TiB2-TiC0.8-SiC复相陶瓷,材料的晶粒发育比较完善,条状TiB2和块状TiC0.8晶粒清晰可见。复合材料的维氏硬度、断裂韧性和弯曲强度分别达到23.6 GPa,(7.0±1.0)MPa.m1/2和470.9 MPa。当温度达到1950℃时,由于增强相TiB2晶粒长大,材料的强度降低。TiB2、TiC0.8与SiC颗粒协同,通过裂纹偏转、晶粒拔出、晶粒细化等机制对复合材料起到颗粒增强增韧的作用。  相似文献   

11.
采用放电等离子烧结技术,以Ni、Ti、B4C混合粉末为原料制备Ni/TiB2-TiC复合材料,分析了Ni含量对复合材料的物相组成、组织结构、硬度和耐磨性的影响。结果表明:Ni/TiB2-TiC复合材料主要物相为γ-Ni、TiB2和TiC,其中TiB2呈矩形条状和多边形状,TiC则呈现不规则块状;随着原始粉末中Ni含量的增加,TiB2和TiC陶瓷相尺寸减小,其在Ni粘结相中的分布呈现出均匀化的趋势,复合材料更加致密。Ni含量显著影响Ni/TiB2-TiC复合材料的耐磨性和磨损机制,Ni含量较低时(20wt%和30wt%),复合材料摩擦系数(COF)较大且存在明显的波动,出现严重的疲劳磨损;随着Ni量的增加(40wt%),材料的COF降低且趋于平稳,表现为微切削磨损;当Ni含量持续增加时(50wt%),由于局部Ni的聚集导致粘着磨损产生,COF有所上升,耐磨性反而下降。  相似文献   

12.
采用等离子熔覆技术,以Fe55、Ti、B4C混合粉末为原料,在Q235低碳钢表面获得了TiB2-TiC/Fe复合涂层,并分析了涂层的物相组成、组织结构,测试了显微硬度和摩擦磨损性能,探讨了其磨损机制。TiB2-TiC/Fe复合涂层的主要物相为TiB2、TiC、α-Fe,其中TiB2呈多边形和矩形,TiC则呈不规则块状;随着原始粉末中Ti、B4C含量的增加,TiB2、TiC尺寸逐渐增大,TiB2-TiC/Fe涂层与基体之间结合紧密,呈冶金结合;随着TiB2-TiC/Fe复合涂层陶瓷相含量的增加,涂层硬度和耐磨性显著提高,当陶瓷相含量增加到一定程度(35wt%)时,涂层耐磨性能有所降低,TiB2-TiC/Fe复合涂层的磨损方式主要是磨粒磨损和剥层磨损。Ti+B4C陶瓷相含量为30wt%的等离子熔覆涂层耐磨性能较好,约为Q235钢基体的7倍,当Ti+B4C含量持续增加时,TiB2、TiC尺寸增大、缺陷增多,最终使TiB2-TiC/Fe复合涂层耐磨性降低。  相似文献   

13.
等离子加热反应合成TiB2-TiC-Fe2Ti复合材料   总被引:1,自引:0,他引:1       下载免费PDF全文
以Ti、B4C和Fe粉为原料,采用等离子束加热反应合成TiB2-TiC-Fe2Ti复合材料,分析了其物相、组织结构、显微硬度和断口形貌等。结果表明:反应生成物中物相主要有TiB2、TiC和Fe2Ti,同时含有少量的Fe3C。各物相以不同的形态均匀分布,TiB2呈现六边形和长条形,TiC近似球形,Fe2Ti作为粘结相存在于TiB2和TiC相之间,促进了各相之间的结合。等离子束加热具有高加热及冷却速率,降低了晶粒生长时间,有利于获得细小的组织。随着电流增加,单位时间内输入坯体热量增多,TiB2和TiC充分长大,各相之间结合更加紧密。  相似文献   

14.
采用反应热压烧结法制备了TaC/Ti3SiC2复合材料,借助XRD、SEM、能谱仪以及热重分析等,研究了TaC含量对TaC/Ti3SiC2复合材料的相组成、显微结构、力学性能和抗氧化性的影响。结果表明: 采用反应热压烧结法可以制备出致密的TaC/Ti3SiC2复合材料,该复合材料的主晶相为Ti3SiC2和TaTiC2,还含有少量的TiC;随着TaC含量的增加,TaC/Ti3SiC2复合材料的弯曲强度和断裂韧性呈现先增大后降低的变化趋势,当TaC含量为30wt%时,二者均达到最大值,此时弯曲强度为404 MPa,断裂韧性为4.10 MPa·m1/2;TaC的引入,使TaC/Ti3SiC2复合材料抗氧化性能明显优于Ti3SiC2材料。  相似文献   

15.
以微孔碳、颗粒级配碳化硼粉体、钛粉和硅粉为原料, 通过多孔预制体真空熔渗Si工艺制备了硼化钛颗粒增强的反应结合碳化硼复相陶瓷, 并通过X射线衍射、扫描电子显微镜、EDS能谱和透射电子显微镜对复合材料的显微结构进行表征。结果表明: 在预制体中钛为15wt%时, 所制备的复相陶瓷抗弯强度和断裂韧性分别为313 MPa和5.40 MPa•m1/2。原位反应生成的硼化钛对材料的增韧补强起到了积极的作用。  相似文献   

16.
刘可心  王蕾  杨晨  金松哲 《复合材料学报》2020,37(11):2844-2852
以Ti3SiC2陶瓷粉和Cu粉作为原料,采用放电等离子烧结(SPS)工艺制备Ti3SiC2/Cu块体复合材料,研究不同Ti3SiC2添加含量及烧结温度对Ti3SiC2/Cu复合材料的组织、致密度和显微硬度的影响,研究SPS后Ti3SiC2/Cu复合材料的摩擦磨损性能。研究表明:采用SPS工艺制备的Ti3SiC2/Cu复合材料的Ti3SiC2在Cu中分布均匀,但随着Ti3SiC2含量的增加和烧结温度的升高,组织中出现团聚趋势,部分Ti3SiC2与Cu在界面处发生互溶现象,互溶增强了Ti3SiC2与基体的结合能力;Ti3SiC2含量和烧结温度对Ti3SiC2/Cu复合材料的致密度和显微硬度影响较大,当烧结温度为900℃时,Ti3SiC2/Cu复合材料的致密度达到99.7%,接近完全致密,Ti3SiC2/Cu复合材料的硬度较纯Cu提高了2倍左右;对于不同Ti3SiC2含量的Ti3SiC2/Cu复合材料的磨损机制也有所差异,当Ti3SiC2含量较低时(1vol%~5vol%),磨损机制为磨粒磨损和黏着磨损;随着Ti3SiC2含量的增加(10vol%~15vol%),Ti3SiC2发挥了本身的自润滑性,Ti3SiC2/Cu复合材料的摩擦磨损性能有所改善,磨损机制转为犁削磨损和轻微黏着磨损;当Ti3SiC2含量增加到20vol%时,Ti3SiC2/Cu复合材料的磨损表面变得均匀而平整,表明Ti3SiC2/Cu复合材料的耐磨性提高。   相似文献   

17.
为研究陶瓷添加物对Ti3SiC2基复合材料性能的影响,首先,采用反应热压烧结法制备了Ti3SiC2材料及陶瓷添加物含量均为30wt%的SiC/Ti3SiC2、Al2O3/Ti3SiC2和MgAl2O4/Ti3SiC2复合材料。然后,测试了材料的力学性能和导电性,在1 373~1 773K温度范围内对Ti3SiC2基复合材料的抗氧化性进行了研究,并对其烧结试样的物相组成和显微结构等进行了表征。结果表明:Ti3SiC2在高温氧化后的主要产物为TiO2和SiO2;氧化层分为内外2层,内层由TiO2与SiO2这2相混合组成,外层为TiO2;氧化层中存在大量显气孔,结构较为疏松,导致抗氧化性较差。与Al2O3/Ti3SiC2和MgAl2O4/Ti3SiC2复合材料相比,SiC/Ti3SiC2复合材料具有更好的抗氧化性。  相似文献   

18.
γ-AlOOH、TiO2和SiCw为原料,通过反应烧结制备了多孔Al2TiO5-SiCw复合材料,研究了SiCw对Al2TiO5-SiCw复合材料物相、微观组织结构、孔隙率和抗压强度的影响。结果表明: 反应产物中主要物相有Al2TiO5、Al6Si2O13、TiC和SiO2。由于晶须分解速度快,SiCw可全部与TiO2反应生成TiC和SiO2。添加SiCw,一方面显著细化了Al2TiO5基复合材料的微观组织,生成的细小规则的TiC晶粒和存在于Al2TiO5晶界处的Al6Si2O13有利于抑制Al2TiO5晶粒长大,提高其抗压强度。另一方面,因为SiCw改变了原料中颗粒之间的堆积方式,使孔径增大、孔隙率显著提高。生成的一定量的SiO2对晶粒产生黏结,使得Al2TiO5基复合材料的孔洞骨架密实,提高了抗压强度,但当SiCw加入量多时,由于出现较多的玻璃相,会降低抗压强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号