首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
利用纳米ZnO改性环氧树脂,研究改性后环氧树脂的拉伸、弯曲和冲击力学性能。试验结果表明,添加ZnO和纳米ZnO均能增加环氧树脂的拉伸强度与弯曲强度。两者的添加效果不同,ZnO添加量与EP的拉伸强度和弯曲强度成正比关系,而纳米ZnO的添加量与EP的拉伸强度和弯曲强度成反比。相同的添加量,纳米ZnO的效果明显优于ZnO;纳米ZnO含量达到4%时,EP的拉伸、弯曲和冲击强度最大。  相似文献   

2.
制备了环氧树脂/纳米金刚石纳米复合材料,研究了纳米金刚石对复合材料力学性能和热性能的影响。研究结果表明,随纳米金刚石含量的增加复合材料的力学性能呈现先增加后降低的趋势。当添加0.4%的纳米金刚石时,复合材料的拉伸强度和弯曲强度比纯环氧树脂分别提高了51.9%和52.5%,冲击强度为纯环氧树脂的1.9倍。复合材料的热稳定性能随着纳米金刚石含量的增加而提高,玻璃化转变温度随着纳米金刚石含量的增加而降低。利用SEM对复合材料增韧增强机理进行了探讨。  相似文献   

3.
纳米二氧化硅对PBT力学和结晶性能的影响   总被引:1,自引:0,他引:1  
采用熔融共混的方法,将纳米SiO2添加到聚对苯二甲酸丁二醇酯(PBT)中,制备出PBT/纳米SiO2复合材料,对其力学和结晶性能进行分析研究。结果表明,随着纳米SiO2含量增加,PBT/纳米SiO2复合材料的拉伸强度和弯曲强度增加,PBT的结晶度增加,球晶尺寸减小,最大扭矩和平衡扭矩变化不大。当纳米SiO2含量为0.1份时,PBT的拉伸强度提高12%,断裂伸长率提高100%,冲击强度提高10%,弯曲强度提高5%,综合力学性能最好。  相似文献   

4.
通过先强力磁力搅拌再超声波分散的方式制备了均匀分散的碳化硅纳米粒子改性环氧树脂复合材料。采用X射线衍射仪、扫描电镜和透射电镜以及力学性能测试研究了强力磁力搅拌时间、超声波振荡时间和碳化硅纳米粒子添加量对复合材料性能的影响。结果表明:当强力磁力搅拌、超声波分散时间分别为2 h时,碳化硅纳米粒子的分散效果最佳,复合材料的拉伸强度和弯曲强度均为最大值。随着碳化硅纳米颗粒用量增加,复合材料的拉伸性能和弯曲性能都出现了先增加后减小的趋势。当碳化硅纳米颗粒的质量分数为2%时,材料的拉伸模量、弯曲强度、弯曲模量和弯曲应变达到了最大值1 390.7 MPa,110.53 MPa,3 269.4 MPa和6.62%,较纯环氧树脂分别提高了24.3%,36.8%,28.6%和30.1%。其质量分数为3%时,拉伸强度和断裂伸长率分别达到最大值70.51 MPa和5.09%,比纯环氧树脂提高了49%和20.3%。  相似文献   

5.
纳米TiO2对环氧树脂力学性能的影响   总被引:7,自引:0,他引:7  
研究了纳米TiO2含量对纳米TiO2/环氧复合材料弯曲性能和拉伸性能的影响.结果表明,超声作用可以使纳米TiO2均匀分散于树脂体系中;环氧树脂中添加纳米TiO2可以同时增强增韧环氧树脂,当纳米TiO2含量为3%时,纳米TiO2/环氧的弯曲强度和拉伸强度比未添加纳米TiO2时分别提高了72%和65%.  相似文献   

6.
研究了纳米TiO2含量对纳米TiO2/环氧复合材料弯曲性能和拉伸性能的影响.结果表明,超声作用可以使纳米TiO2均匀分散于树脂体系中;环氧树脂中添加纳米TiO2可以同时增强增韧环氧树脂,当纳米TiO2含量为3%时,纳米TiO2/环氧的弯曲强度和拉伸强度比未添加纳米TiO2时分别提高了72%和65%.  相似文献   

7.
在聚乳酸(PLA)/自制抗菌母料(AMB)纳米复合材料中添加扩链剂甲苯二异氰酸酯(TDI),研究了TDI含量对纳米复合材料抗菌性能和力学性能的影响。结果表明,TDI质量分数在0~2.5%范围内,随着TDI含量的增加,复合材料对大肠杆菌的抗菌性能逐渐轻微减弱,但仍为强抗菌材料;拉伸强度、缺口冲击强度和弯曲强度逐渐增加,断裂伸长率先增加后减小。当TDI质量分数为2.5%时,复合材料的综合性能最好,与PLA/AMB相比,其拉伸强度、断裂伸长率、缺口冲击强度和弯曲强度分别提高了7.9%,147.6%,29.4%和22.0%,抗菌率为99.1%,仍为强抗菌材料。  相似文献   

8.
将竹纤维加入到环氧树脂中以形成增强环氧复合材料,研究了竹纤维竹粉和纳米二氧化硅(SiO2)对环氧树脂的力学性能和耐溶剂浸蚀性能的影响。竹纤维含量为15%时,竹纤维/环氧树脂的冲击强度比纯环氧树脂提高50%。纳米SiO2能同时增强和增韧竹纤维/环氧树脂,并提高其耐溶剂浸蚀性能,纳米SiO2含量为4%时,纳米SiO2/竹纤维/环氧树脂三元复合材料的冲击和拉伸强度分别比未添加纳米SiO2的竹纤维/环氧树脂提高40%和30%。当纳米SiO2/竹纤维/环氧树脂的质量比为4/15/85时,三元复合材料的综合性能较好。  相似文献   

9.
使用硅烷偶联剂对纳米铝粉的表面进行了改性。采用共混和热压成型方法制备了环氧树脂/炭纤维布和环氧树脂/炭纤维布/铝粉复合材料,并研究了复合材料的力学性能和导热性能。结果表明,复合材料的弯曲强度和冲击强度随着炭纤维布用量的增加而显著增大;纳米铝粉的添加进一步提高了复合材料的弯曲强度和冲击强度。当炭纤维布用量从0层增加到4层时,环氧树脂/炭纤维布复合材料的导热系数从0.55 W/(m·K)提高到1.3 W/(m·K)。当炭纤维布用量为3层和纳米铝粉质量分数为20%时,环氧树脂/炭纤维布/铝粉复合材料的导热系数为5.7 W/(m·K),比含有3层炭纤维布的环氧树脂/炭纤维布复合材料提高了3.8倍。  相似文献   

10.
研究以聚丙烯接枝马来酸酐(PP-g-MAH)和聚烯烃弹性体接枝马来酸酐(POE-g-MAH)为界面相容剂的长玻璃纤维增强尼龙6(LGF/PA 6)复合材料的力学性能,并与短玻璃纤维增强尼龙6(SGF/PA 6)复合材料的力学性能进行对比。结果表明:LGF/PA 6复合材料的拉伸强度、弯曲强度和弯曲模量均随着玻璃纤维含量的增加呈直线上升趋势,玻璃纤维质量分数达到40%时,增强效果十分显著;在添加相同含量的玻璃纤维时,LGF/PA 6复合材料的拉伸强度、弯曲强度、弯曲模量低于SGF/PA 6复合材料;2种复合材料的冲击强度均随着玻璃纤维含量的增加呈非线性增加,当添加相同含量的玻璃纤维时,LGF/PA 6复合材料的冲击强度高于SGF/PA 6复合材料;两种界面相容剂均改善了玻璃纤维与PA 6的界面性能,显著提高了复合材料的冲击强度,其中添加PP-g-MAH的LGF/PA 6复合材料的冲击强度的提高高于添加POE-g-MAH的,但拉伸强度和弯曲强度均有不同程度降低,其中添加POE-g-MAH的LGF/PA 6复合材料的拉伸强度、弯曲强度和弯曲模量下降得较为明显。  相似文献   

11.
将纳米TiO_2、稻壳粉、聚氯乙烯(PVC)和稳定剂等按一定比例混合,用挤出成型法制备PVC/稻壳粉木塑复合材料。考察纳米TiO_2添加量对PVC/稻壳粉木塑复合材料性能的影响。实验结果表明,随着纳米TiO_2含量的增加,木塑复合材料的力学性能、防水性能和热稳定性呈现先增加后降低的趋势,但木塑复合材料的表面颜色却随着纳米TiO_2含量的增加而逐渐变浅。当纳米TiO_2含量为1.00份时,木塑复合材料的综合性能最好,与未添加纳米TiO_2的木塑复合材料相比,其拉伸强度、冲击强度和弯曲强度分别提高了40.6%,62.2%和19.7%,8 d的吸水率从2.5%降低为1.6%,表面接触角从78.5°增加到82.1°,800℃时的残炭率从21.1%提高到29.5%。  相似文献   

12.
探讨了随环氧树脂含量的增加,环氧树脂/粉煤灰复合材料的强度、韧性以及微观结构的变化趋势。结果表明:当环氧树脂含量增加到30%时,复合材料的拉伸强度、断裂伸长率和冲击强度分别是环氧树脂含量为15%时的329%、168%和257%,环氧树脂含量进一步增加,复合材料的各项性能变化不大;环氧树脂含量达到30%时,复合材料形成了分布均匀的2μm左右的小气孔,并且其密度和尺寸随着环氧树脂含量的增加而增大。环氧树脂含量为30%~40%时,环氧树脂/粉煤灰复合材料的综合性能最好。  相似文献   

13.
采用转矩流变仪混合造粒,通过注射成型方法制备了聚丙烯(PP)/黄麻纤维复合材料,研究了对纤维表面进行处理的NaOH浓度、纤维含量和相容剂的含量对PP/黄麻纤维复合材料力学性能的影响,采用扫描电镜对纤维表面及复合材料的断面形貌进行分析。结果表明:黄麻纤维经过碱处理后PP/黄麻纤维复合材料的力学性能优于纤维未处理的复合材料的力学性能,随着NaOH浓度的提高,PP/黄麻纤维复合材料的拉伸强度和冲击强度增加,在NaOH浓度为16%时,其拉伸强度和冲击强度最佳;其弯曲强度随着NaOH浓度的提高先增加而后下降,在8%浓度时,弯曲强度最大。随着纤维含量的提高,PP/黄麻纤维复合材料的拉伸强度和弯曲强度先增加后下降,在纤维含量达到20%时,PP/黄麻纤维合材料的拉伸强度和弯曲强度达到最大。随着纤维含量的提高,PP/黄麻纤维复合材料的冲击强度降低。相容剂的加入使得PP/黄麻纤维复合材料的拉伸强度和弯曲强度明显增加。  相似文献   

14.
以纳米 Si_3N_4为填料制备了环氧树脂/纳米 Si_3N_4复合材料。通过透射电镜观察到,纳米粒子在有机基体中分散均匀。研究了纳米 Si_3N_4对复合材料性能的影响,结果表明,添加纳米 Si_3N_4使复合材料的力学性能增加,当改性环氧树脂/纳米 Si_3N_4为100/3(质量比,下同)时,复合材料的拉伸强度、弯曲强度、冲击强度提高幅度最大,分别提高了145%、241%、255%。此时,复合材料的击穿场强提高的幅度也达到最大,在直流电压和交流电压下,分别提高了249%、146%;但添加纳米 Si_3N_4使复合材料的介电常数和介质损耗值减小;热重分析表明,环氧树脂/纳米Si_3N_4复合材料耐热性能有明显提高。并用"核-壳过渡层"结构模型初步探讨了各项性能改善的原因。  相似文献   

15.
以11-氨基十一酸和湿态白炭黑为原料,通过原位聚合的方法制备了尼龙11/白炭黑纳米复合材料,并用红外光谱仪和扫描电子显微镜等研究了纳米复合材料的形态结构、力学性能和阻隔性能。结果显示,当白炭黑含量增加时,拉伸强度和弯曲强度先显增大趋势;当白炭黑质量分数达到8%时,拉伸、弯曲强度达到最大值;之后,拉伸、弯曲强度开始减小。断裂伸长率则一直减小,无明显变化。尼龙11及其纳米复合材料的常温冲击强度也随着白炭黑含量的增加逐渐降低。此外,白炭黑的加入极大地提高了复合材料的阻隔性能。  相似文献   

16.
采用自制的圆锥式混炼器对环氧树脂(EP)/ZnO晶须复合材料进行共混。研究了ZnO晶须含量、混炼器混合和机械混合两种方式以及混炼器混炼间隙对EP/ZnO晶须复合材料力学性能和导热系数的影响。研究发现,无论采用何种混合方式,随着ZnO晶须含量的增加,EP/ZnO晶须复合材料的力学性能都呈现出先增大后减小的趋势;混炼器混合的效果好于机械混合。EP/ZnO晶须复合材料的拉伸强度和冲击强度在混炼器混炼间隙为1 mm、ZnO晶须质量分数分别为5%和2%时取得最大值,分别为31.55 MPa和12 kJ/m2,相比同体系下的机械混合方式,EP/ZnO晶须复合材料的拉伸强度和冲击强度分别提高了14.3%和74.4%。继续增大混炼器混炼间隙会导致EP/ZnO晶须复合材料的力学性能变差。EP/ZnO晶须复合材料的导热系数随ZnO晶须含量的增加而增大,但混合方式对其影响不大;当ZnO晶须含量相同时,随着混炼器混炼间隙的增大,EP/ZnO晶须复合材料的导热系数有小幅增加。  相似文献   

17.
针对高密度聚乙烯(PE–HD)/碳纤维(CF)二元复合材料随CF含量的增加,拉伸强度和弯曲强度增大、冲击强度却逐渐下降的情况,在二元体系中添加纳米CaCO3制得PE–HD/CF/CaCO3三元复合材料,对比分析了两种复合材料的力学性能,并采用扫描电子显微镜对三元复合材料的冲击断面进行观察。结果表明,纳米CaCO3的加入使得三元复合材料的拉伸强度略有降低,但弯曲强度和冲击强度在一定范围内增大;当纳米CaCO3含量为10份时,复合材料的综合力学性能最佳。  相似文献   

18.
以石墨烯为填料,反式聚异戊二烯为基体,通过熔融法制备了反式聚异戊二烯/石墨烯纳米复合材料,并对其力学性能进行了探讨。实验结果表明:随着石墨烯含量的增加,复合材料的拉伸强度和断裂伸长率增加。当石墨烯的质量分数为0.05%时,纳米复合材料拉伸强度最大,为44 MPa。添加石墨烯可以显著提高复合材料的力学性能。  相似文献   

19.
将环氧系扩链剂ADR添加到聚乳酸(PLA)/Nano-ZnO/叶绿素铜酸(CCA)纳米复合抗菌材料中,研究了ADR添加量对复合材料抗菌性能和力学性能的影响。结果表明,在ADR质量分数为0%~1.0%范围内,随ADR含量的增多,复合材料对大肠杆菌的抗菌性能略有减弱,其缺口冲击强度有较大幅度的增加,弯曲强度、拉伸强度略有增加,断裂伸长率先增大后减小,ADR质量分数小于1.0%时仍属强抗菌材料。当ADR质量分数为1.0%时复合材料的综合性能较好,其抗菌率为99.4%,拉伸强度、断裂伸长率、缺口冲击强度、弯曲强度分别比PLA/Nano-ZnO/CCA复合材料提高了4.6%,11.6倍、71.4%,4.8%。  相似文献   

20.
采取高弹性、高强度的碳纳米管材料对环氧树脂进行改性,羧基和环氧基功能化法对碳纳米管进行改性,通过共混法制备碳纳米管/环氧树脂复合材料,对其力学性能的影响因素进行分析,并进行微观形貌分析。实验结果表明:添加碳纳米管的环氧树脂复合材料较未添加的环氧树脂力学性能均有明显提升,三种样品中,E-M60/EP的增韧效果最好,冲击强度、弯曲强度、拉伸强度和断裂伸长率分别为26.1 kJ/m~2、127.2 MPa、48.6 MPa和8.2%,较未添加前分别提升了75.2%、35.0%、176%和1 950%。当添加量为0.6%以下时,小粒径的碳纳米管更有利于提升材料力学性能,C-M20/EP的冲击强度、弯曲强度和拉伸强度较未添加的环氧树脂分别提升了62.4%、32.7%和144%。当添加量为0.6%~1.0%时大粒径的碳纳米管改善效果更好,C-M60/EP的冲击强度、弯曲强度和拉伸强度分别提升了67.8%、34.3%和172%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号