首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
霍尔离子源制备类金刚石薄膜研究   总被引:2,自引:0,他引:2  
采用霍尔离子源沉积类金刚石薄膜是近年来新出现的一种方法,本文研究了自行研制的霍尔离子源的性能以及采用此离子源制备类金刚石薄膜及工艺参数的影响。结果表明,霍尔离子源在较低的电压即可起辉,可提供稳定的能量较低的离子束流。采用霍尔离子源沉积类金刚石薄膜的沉积速率约为O.5nm/s。随着霍尔离子源灯丝电流的升高,离子源放电电压下降,制备的类金刚石薄膜的硬度下降。放电电流的变化对类金刚石薄膜的硬度影响不大。  相似文献   

2.
本文通过对端部霍尔离子源特性的研究 ,采用自行研制的用于离子束辅助沉积的端部霍尔离子源成功镀制了类金刚石膜 ,并对采用该离子源制备类金刚石膜的工艺进行了研究和分析。实验结果表明 ,采用端部霍尔离子源镀制类金刚石膜不仅操作简单、可实现大面积沉积 ,而且类金刚石膜的沉积速率较大 ,最大可达 0 .8nm s,其折射率依不同工艺在 1.8~ 2 .2之间可调。并对不同工艺条件下制备的类金刚石膜的硬度进行了测试和分析。  相似文献   

3.
脉冲真空放电离子密度的测量   总被引:1,自引:0,他引:1  
弥谦  蔡长龙  马卫红  严一心 《真空》2006,43(1):43-46
由于采用脉冲放电沉积技术能够克服连续电弧离子镀沉积时产生的液滴及负偏压放电的缺点,特别是它在镀制类金刚石薄膜中显示出来的独特性能:不含氢和硬度高,使其在薄膜沉积技术中越来越受到广大研究者的重视。为了更深入地研究薄膜的沉积工艺和薄膜性能之间的关系,迫切需要对脉冲真空放电等离子体的微观参数进行深入透彻的研究,如离子密度及其空间分布等。本文介绍了测量脉冲真空电弧离子源离子密度的方法,并采用该方法测量了脉冲真空电弧离子源离子密度及其空间分布,分析和研究了影响离子空间分布的各种参数。  相似文献   

4.
对离子源进行合理设计,使离子源中的Ar离子溅射产生Fe离子,利用裹挟Fe离子的Ar离子在制备类金刚石薄膜的过程中进行间歇性注入掺杂,制备多层类金刚石薄膜.这种多层类金刚石薄膜和单层类金刚石薄膜相比,应力从4.5 GPa降至3.9 GPa,摩擦系数从0.14降至0.1附近,同时保持硬度值不变.  相似文献   

5.
利用离子辅助沉积工艺在玻璃基板上制备了纳米TiO2薄膜,考察了离子源电压和电流的变化对TiO2薄膜晶体结构、光催化活性和光学等特性的影响.结果表明,离子辅助沉积法制备的TiO2薄膜具有好的锐钛矿型晶体结构和高的光催化活性,其晶粒尺寸随着离子源能量的增大而减小.在离子源电压和电流为600V和1200mA时所制备的TiO2薄膜具有最好的光催化活性,对亚甲基蓝水溶液的降解率达到了92.3%.  相似文献   

6.
直流负偏压对类金刚石薄膜结构和性能的影响   总被引:3,自引:1,他引:2  
利用直流-射频-等离子体增强化学气相沉积技术在单晶硅表面制备了类金刚石薄膜,采用原子力显微镜、Raman光谱、X射线光电子能谱、红外光谱、表面轮廓仪和纳米压痕仪考察了直流负偏压对类金刚石薄膜表面形貌、微观结构、沉积速率和硬度等性能的影响。结果表明:无直流负偏压条件下,薄膜呈现有机类聚合结构,具有较低的SP3含量和硬度;叠加上直流负偏压后,薄膜具有典型的类金刚石结构特征,SP3含量和硬度得到了显著的提高;但随着直流负偏压的升高,薄膜的沉积速率和H含量逐渐降低,而SP3含量和硬度在直流负偏压为200V时出现最大值,此后逐渐降低。  相似文献   

7.
不锈钢衬底上沉积类金刚石薄膜的硬度   总被引:2,自引:0,他引:2  
利用射频辉光放电法在不锈钢衬底上制备了类金刚石薄膜,用显微硬度计测试了薄膜与衬底复合膜度和衬底硬度。并用B.Jonson和B.Hogmark方法将薄硬度分离出来,得到了硬度值与制与制备参数间的关系,确定了在不锈钢衬底上沉积高度和强附丰度类金刚石薄膜的最佳工艺条件范围,并对实验结果进行了理论解释。  相似文献   

8.
万军  马志斌 《材料导报》2004,18(2):23-25
评述了液相沉积(类)金刚石薄膜的研究现状,介绍了液相合成(类)金刚石薄膜的装置、液态源及薄膜的性能,分析了如何更好地提高(类)金刚石薄膜质量,并在此基础上提出了一种可能制备出高质量金刚石薄膜的脉冲电弧放电沉积装置.  相似文献   

9.
胡德平  刘成龙  齐民  杨大智  李国卿  徐军 《功能材料》2005,36(10):1561-1563,1567
实验利用双放电腔微波-ECR等离子体源设备,采用复合PVD(physical vapor deposition)和PECVD(plasma enhanced chemical vapor deposition)的方法, 先后在NiTi基体上沉积Si和Si/α-C∶H过渡层,然后制备类金刚石薄膜.Raman光谱和透射电镜表明制备的梯度薄膜是典型的类金刚石薄膜,划痕的测试结果表明, Si过渡层沉积时间影响着梯度类金刚石薄膜与NiTi合金基体之间的结合强度,当沉积时间在60min左右时可获得具有最好结合强度的梯度薄膜,而超过或低于这个时间值会导致膜基结合强度降低.  相似文献   

10.
介质阻挡放电化学气相沉积法制备DLC薄膜研究   总被引:4,自引:0,他引:4  
采用介质阻挡化学气相沉积法(DBD CVD)在Si及石英衬底上、室温下成功的沉积出光滑、致密、均匀、膜基结合较好的类金刚石(DLC)薄膜,并考察了电源电压对类金刚石薄膜结构及性能的影响。拉曼光谱(Raman)、扫描电子显微镜(SEM)、原子力显微镜(AFM)、紫外可见光谱(UV Vis)、高阻仪等测试及分析结果显示DBD CVD 法适于制备高质量硬质DLC薄膜。对DBD放电做了理论分析,结果与工艺研究的结论相符合。  相似文献   

11.
Diamond-like carbon (DLC) films were prepared for a protective coating on nitinol substrate by hybrid ion beam deposition technique with an acetelene as a source of hydrocarbon ions. An amorphous silicon (a-Si) interlayer was deposited on the substrates to ensure better adhesion of the DLC films followed by Ar ion beam treatment. The film thickness increased with increase in ion gun anode voltage. The residual stresses in the DLC films decreased with increase in ion gun anode voltage and film thickness, while the stress values were independent of the radio frequency (RF) bias voltage. The adhesion of the DLC film was improved by surface treatment with argon ion beam for longer time and by increasing the thickness of a-Si interlayer.  相似文献   

12.
等离子体源离子注入法制备类金刚石薄膜   总被引:2,自引:0,他引:2  
用等离子体源注入(PSII)在Si(100)上制备类金刚石膜,放电气体采用CH4,用微波电子回旋共振(ECR)产生等离子体。将-20~-30kV的高压加在衬底上,来提高离子的能量。通过Raman光谱和FT-IR光谱检测了类金刚石膜的化学组成及状态,并对其机械性能和表面形貌进行了检测。结果显示,硅片硬度和摩擦因数得到了改善,用PSII能够制备出性能优良的膜,可以将其应用到微电子器件(MEMS)上去。  相似文献   

13.
The low hardness and poor tribological performance of aluminum alloys restrict their engineering applications. However, protective hard films deposited on aluminum alloys are believed to be effective for overcoming their poor wear properties. In this paper, diamond-like carbon (DLC) films as hard protective film were deposited on 2024 aluminum alloy by arc ion plating. The dependence of the chemical state and microstructure of the films on substrate bias voltage was analyzed by X-ray photoelectron spectroscopy and Raman spectroscopy. The mechanical and tribological properties of the DLC films deposited on aluminum alloy were investigated by nanoindentation and ball-on-disk tribotester, respectively. The results show that the deposited DLC films were very well-adhered to the aluminum alloy substrate, with no cracks or delamination being observed. A maximum sp3 content of about 37% was obtained at −100 V substrate bias, resulting in a hardness of 30 GPa and elastic modulus of 280 GPa. Thus, the surface hardness and wear resistance of 2024 aluminum alloy can be significantly improved by applying a protective DLC film coating. The DLC-coated aluminum alloy showed a stable and relatively low friction coefficient, as well as narrower and shallower wear tracks in comparison with the uncoated aluminum alloy.  相似文献   

14.
DLC films were prepared by plasma-based ion implantation (PBII) using acetylene as carbon source on AISI 321 steel substrate. The effect of implanting voltage on the characteristics of these films was investigated. The structures of the films were analyzed by Raman spectroscopy. The morphologies of the films were observed by atomic force microcopy (AFM), and the hardness of the films was measured with mechanical property microprobe. The results indicated that the characteristics of these films are strongly depended on the implanting voltage. The DLC films with lowest friction coefficient, longest wear life, and lowest surface roughness was achieved around −30 keV, which was thought to be the optimum implanting voltage in this study.  相似文献   

15.
Superhard carbon film deposition by means of Laser‐Arco® on the way from the Laboratory into the industrial series coating Diamond‐like carbon films (DLC) are more and more applied as wear protection coatings for components and tools due to their unique combination of high hardness, low friction and sticking tendency to metallic counter bodies. Up to now applied DLC films are hydrogen containing (a‐C:H) or metal carbon films (Me‐C:H) deposited by a plasma assisted CVD process from carbon‐hydrogen gas mixtures. Their wide industrial effort results from that the can be deposited with slowly modified coating machines for classical hard coating (e.g. TiN or CrN). A new generation DLC films are the hydrogen‐free ta‐C films (ta‐C = tetrahedral bounded amorphous carbon) with a between two and three‐times higher hardness and with a resulting higher wear resistance under extreme condition than classical DLC films. They have excellent emergency running properties at lubrication break down. Their industrial application is more difficult due to that they cannot deposited with modified coating machines for classical hard and DLC coating and a new technology with corresponding equipment was not available up to now. The laser controlled, pulsed arc deposition technology (Laser‐Arco®) of the Fraunhofer IWS Dresden has this potential. In kind of a Laser‐Arc‐Module‐source the ta‐C film deposition can be integrated in every industrial used deposition machine.  相似文献   

16.
通过超声方法处理聚氨基甲酸酯表面,选择脉冲碳离子源,结合阴极放电等离子方法在EVM表面完成DLC涂层的沉积过程,对超声处理过程中温度与时间参数引起的DLC涂层摩擦特性改变进行分析。实验测试研究结果表明:当超声处理的时间延长或者温度升高后,在试样表面形成了更深的条纹,能够显著增强EVM表面发生溶解的能力。DLC涂层在拉曼光谱测试过程中都形成低波数区间中的肩部结构,可以推断其光谱曲线都包含了D峰与G峰,在DLC膜内形成了跟高比例的石墨相。DLC涂层后的表面相对于EVM发生了摩擦系数稳定性下降,该结果表明DLC涂层可以使EVM获得更优耐磨性。当超声温度升高以及时间延长后,试样先发生摩擦系数的略微减小,之后发生逐渐升高。进行超声超声后,试样发生了磨损量的大幅降低,可以获得更致密的DLC涂层。  相似文献   

17.
Diamondlike carbon (DLC) films from a primary ion beam deposition system, were examined using nanoindentation, SEM, AES, XPS, and Raman Spectroscopy. The films have hardness values ranging from 21 to 29 GPa. The results of SEM and AES show that the films are predominantly carbon without any crystalline features, and that nitrogen is incorporated as nitrogen is used as the ion beam source. XPS, and Raman Spectroscopy confirm that the films are amorphous carbon with a combination of sp3 with sp2 bonding. It is concluded that DLC films can be directly deposited on steel using a single ion beam to sputter the solid target, and the structure and properties of DLC largely depend on ion beam source.  相似文献   

18.
An alternative transparent conductive oxide, molybdenum doped zinc oxide (MZO) was deposited onto a flexible polyethersulfone (PES) substrate by using a dual ion beam sputtering system. One argon ion beam was used to sputter a MZO target and another assistant argon ion beam was for bombarding deposits simultaneously. The assistant ion source discharge voltage and current were changed respectively for investigating their influences on the conductivity of deposited MZO films. Changing the discharge voltage shows that, the film crystallinity, carrier concentration and mobility in films all increase with the discharge voltage and subsequently decrease when the applied voltage is over 100 V. Changing the discharge current also shows a similar trend. The film crystallinity and carrier concentration initially increase with the discharge current, and thereafter a minimum for 1.4 A, and a subsequent increase in resistivity is observed. According to the results, properly raising the discharge voltage and current of assistant ion source can improve both electrical conductivity and optical transparency of deposited MZO films, but the excess discharge voltage and current will cause the grain refinement which may retard the carrier mobility and result in the lower conductivity of MZO films.  相似文献   

19.
Chemical vapor deposition (CVD) of hard diamond-like carbon (DLC) films on silicon (100) substrates from methane was successfully carried out using a radio frequency (r.f.) inductively coupled plasma source (ICPS). Different deposition parameters such as bias voltage, r.f. power, gas flow and pressure were involved. The structures of the films were characterized by Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. The hardness of the DLC films was measured by a Knoop microhardness tester. The surface morphology of the films was characterized by atomic force microscope (AFM) and the surface roughness (Ra) was derived from the AFM data. The films are smooth with roughness less than 1.007 nm. Raman spectra shows that the films have typical diamond-like characteristics with a D line peak at 1331 cm−1 and a G line peak at 1544 cm−1, and the low intensity ratio of ID/IG indicate that the DLC films have a high ratio of sp3 to sp2 bonding, which is also in accordance with the results of FTIR spectra. The films hardness can reach approximately 42 GPa at a comparatively low substrate bias voltage, which is much greater than that of DLC films deposited in a conventional r.f. capacitively coupled parallel-plate system. It is suggested that the high plasma density and the suitable deposition environment (such as the amount and ratio of hydrocarbon radicals to atomic or ionic hydrogen) obtained in the ICPS are important for depositing hard and high quality DLC films.  相似文献   

20.
TiNi合金表面沉积类金刚石薄膜的性能评价   总被引:2,自引:0,他引:2  
崔琳  柳翠  齐民  李国卿 《功能材料》2005,36(8):1223-1225
类金刚石膜作为新型的生物材料得到了广泛的关注。本实验制备的薄膜为典型的类金刚石膜,膜层比较致密、均匀和光滑。膜层硬度随离子束能量变化,在束电源为750V附近出现峰值,硬度达到了15GPa,该膜的摩擦系数为0.124。在Troyde’s模拟体液中的电化学分析表明,类金刚石膜显著提高了TiNi合金表面抗点蚀能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号